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Abstract. This paper develops a multi-agent heterogeneous search ap-
proach that leverages the sensing and motion capabilities of different
agents to improve search performance (i.e., decrease search time and in-
crease coverage efficiency). To do so, we build upon recent results in er-
godic coverage methods for homogeneous teams, where the search paths
of the agents are optimized so they spend time in regions proportion-
ate to the expected likelihood of finding targets, while still covering the
whole domain, thus balancing exploration and exploitation. This paper
introduces a new method to extend ergodic coverage to teams of het-
erogeneous agents with varied sensing and motion capabilities. Specifi-
cally, we investigate methods of leveraging the spectral decomposition of
a target information distribution to efficiently assign available agents to
different regions of the domain and best match the agents’ capabilities to
the scale at which information needs to be searched for in these regions.
Our numerical results show that distributing and assigning coverage re-
sponsibilities to agents based on their dynamic sensing capabilities leads
to approximately 40% improvement with regard to a standard coverage
metric (ergodicity) and a 15% improvement in time to search over a
baseline approach that jointly plans search paths for all agents, averaged
over 500 randomized experiments.
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1 Introduction

With the rapid development of affordable robots with embedded sensing and
computation capabilities, we are quickly approaching a point at which real-
life applications will involve the deployment of hundreds, if not thousands, of
robots [1, 2]. Among these applications, significant research effort has been de-
voted to multi-agent search [3, 4, 5, 6, 7], where deploying numerous agents can
greatly improve the time-efficiency and robustness of search. In fact, deploying
robots with various motion or sensing modalities can further improve the search
performance, by leveraging the natural synergies between these capabilities (see
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Fig. 1). Motivated by such problems, the main contribution of this work is to
investigate the distribution of agents to search a domain at various spatial scales,
based on their motion and sensing capabilities. Specifically, we build upon recent
results in ergodic search processes [3, 8, 9, 10] to propose a mapping of available
agents to a spectral-based decomposition of the search problem, to best match
agents’ capabilities to specific classes of areas of the search domain.

Fig. 1. Multi-agent search scenario in-
volving two types of agents: differential-
drive agents with short-range, high fi-
delity sensors (represented by the red
and orange circles), and omnidirectional
agents with long-range, low fidelity sen-
sors (represented by the blue and green
circles). The different colored lines repre-
sent the paths followed by the different
agents. The underlying distribution shows
the likelihood of finding targets through-
out the domain.

The approach in this paper is based
on ergodic search processes, which, sim-
ilar to other information-theoretic cov-
erage methods [3, 4, 8, 11, 12], rely
on an a priori information distribution,
representing the likelihood of finding a
target at any point over the search do-
main, to guide the search. In practice,
this information distribution can be ob-
tained from scouting missions or from
expert knowledge, and is updated dur-
ing search if inaccurate. If nothing is
known about the targets’ whereabouts,
this distribution is usually considered
uniform over the whole domain, i.e.,
targets could be anywhere with equal
probability. Using this a priori infor-
mation distribution, ergodic search pro-
cesses optimize search paths over long
time horizons for all agents.

In this work, we determine search
paths via an optimization process using
the ergodic metric [3]. The optimization
of search paths, according to the ergodic metric, aims to drive agents to spend
time in areas of the domain in proportion to the a priori likelihood of finding
targets in these areas. This optimization is performed in the spectral domain, by
minimizing the difference between the coefficients associated to the team’s time-
average statistics (i.e., fraction of the time spent in each area) and those of the
information distribution. The contribution of this work is to exploit the spectral
nature of the ergodic metric in search scenarios involving heterogeneous agents.
To this end, we plan search paths for each agent type based on a smaller subset
of the spectral coefficients associated with the information map, thus driving
agents to search the domain at a spatial scale that best matches their motion
and sensing capabilities.

This paper is organized as follows: Section 2 discusses recent advances in
multi-agent search and in coordination of heterogeneous multi-agent systems.
We then provide a brief background of ergodic search processes in Section 3.
Section 4 details our spectral-based decomposition of a search problem and of
the available agents. We then present and discuss the results of our systematic set
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of experiments in Section 5. There, we observe that our best agent distribution
approach leads to a 40% increase in coverage performance (thus generally leading
to more time-efficient search), averaged over 500 randomized experiments, over
a baseline that jointly plans search paths for the whole team regardless of their
individual abilities. Section 6 offers concluding remarks.

2 Prior Work

2.1 Multi-Agent Search

Current active search methods generally fall into one of three main categories:
geometric, gradient-based, and trajectory optimization-based approaches. Geo-
metric methods, e.g., lawnmower patterns, can be good search strategies in order
to uniformly cover a domain in which there is near-uniform probability of finding
a target [13, 14]. Since these approaches exhaustively cover the search domain,
they are also the logical choice in cases where there is no a priori information
about the targets’ locations.

An information map, or information distribution, is defined to be a prob-
ability distribution representing the likelihood of a target being found at each
location in the domain. When such a priori information is available (and, usu-
ally, non-uniform), more advanced search processes can be created that leverage
this information map in order to improve search according to some metric, such
as time to find all targets.

For example, in gradient-based, or “information surfing”, methods [4, 11, 12],
agents guide their movement in the direction of the derivative of the informa-
tion map around their positions to greedily maximize the short-term information
gain. That is, agents are always driven in the direction of the greatest informa-
tion gain, which naturally leads them to areas where the likelihood of finding
a target is maximized. Information surfing can be implemented in a fully de-
centralized manner, since it does not require tight coordination between agents,
and potential fields can be introduced to help distribute agents to different ar-
eas of the domain. However, gradient-based approaches generally do not rely
on the uncertainty associated with the information distribution, which can lead
to areas left unexplored, as this uncertainty can help differentiate areas of low-
information that have not been explored from areas with no information to be
gained. Gradient-based approaches are also very sensitive to noise in the infor-
mation map, as the gradient cannot be estimated accurately in these situations,
and suffer from greedily over-exploiting local information maxima.

Optimization-based approaches look at search as an information gathering
maximization problem, which is then solved by planning (usually joint) paths
for the agents. Several recent works in coverage methods [9, 3, 10, 8] rely on
sampling-based path planning, where a large number of paths are sampled and
the best path is chosen based on a cost metric. Optimization-based approaches
can combine both the predicted information distribution as well as its associated
uncertainty into the cost function that drives the optimization. However, these
approaches generally do not scale well for large multi-agent systems since they
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remain centralized. Even for sampling-based approaches, the number of paths
that need to be sampled to find near-optimal search paths grows exponentially
with the number of agents, although growing the number of samples linearly with
the team size seems to experimentally provide good-quality search paths [9, 3].

2.2 Heterogeneity in MAS

Most search methods developed for homogeneous groups of agents (i.e., agents
with similar capabilities) do not support groups of agents with heterogeneous
capabilities (for example, a set of agents with different sensing or motion capabili-
ties), or struggle with the increased computational complexity [15, 16, 17, 18, 19].
Many previous works involving heterogeneous agents concentrate on offering ini-
tial, usually centralized and non-scalable solutions to the problems that they
mainly focus on defining [20, 21, 22, 23]. Some works have considered using
auction-based mechanisms for task assignment in heterogeneous groups [24, 25,
26], while others have proposed agent redistribution based on given sets of their
capabilities [27, 28]. Other works have considered using robots with the best
communication or coordination capabilities as “leader agents” to plan for and
coordinate the other agents with lesser capabilities [6, 29].

3 Background on Ergodic Search Processes

Ergodic search processes [8] produce trajectories for multi-agent systems, such
that agents spend time in each area of the domain proportional to the expected
amount of information present in this area. To this end, the spatial time-average
statistics of an agent’s trajectory γi : (0, t]→ X , quantifies the fraction of time
spent at a position x ∈ X , where X ⊂ IRd is the d-dimensional search do-
main. For N agents, the joint spatial time-average statistics of the set of agents
trajectories {γi}Ni=1 is defined as [8]

Ct(x, γ(t)) =
1

Nt

N∑
i=1

∫ t

0

δ(x− γi(τ)) dτ, (1)

where δ is the Dirac delta function.
Formally, the agents’ time-averaged trajectory statistics is optimized against

the expected information distribution over the whole domain, by matching their
spectral decompositions. This is obtained by minimizing the ergodic metric Φ(·),
expressed as the weighted sum of the difference between the spectral coefficients
of these two distributions [8]:

Φ(γ(t)) =

m∑
k=0

λk |ck(γ(t))− ξk|2 , (2)

where ck and ξk are the Fourier coefficients of the time-average statistics of
the set of agents’ trajectories γ(t) and the desired spatial distribution of agents
respectively, and λk are the weights of each coefficient difference. In practice,
λk =

√
(1 + ‖k‖2)−(d+1) is usually defined to place higher weights on the lower
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frequency components, which correspond to larger spatial-scale variations in the
information distribution.

The goal of ergodic coverage is to generate optimal controls u∗(t) for each
agent, whose dynamics is described by a function f : Q× U → T Q, such that

u∗(t) = arg minu Φ(γ(t)),

subject to q̇ = f(q(t),u(t)),

‖u(t)‖ ≤ umax

(3)

where q ∈ Q is the state and u ∈ U denotes the set of controls. Eq.(3) can
either be solved by discretizing the exploration time and solving for the optimal
control input at each time-step [8], by trajectory optimization to plan feed-
forward trajectories over a specified time horizon [30], or by using sampling-based
motion planners [31], where it is straightforward to pose additional constraints
such as obstacle avoidance.

4 Distributed Heteregeneous Ergodic Search

This work investigates the coordination of a team of heterogeneous agents dur-
ing search from two key fronts. First, we look at how the spectral decomposition
of the information distribution can be interpreted in order to search regions at
different spatial scales. In other words, lower frequency components typically de-
scribe the distributions in broad strokes, while higher frequency ones are respon-
sible for filling in the details. Second, we study how agents should be assigned
to different spectral bands of the information decomposition, and formulate an
assignment that reasons about the agents’ varying capabilities to cover a domain
more efficiently.

4.1 Spectral Bands of the Information Distribution

In this work, we rely on the spectral decomposition of the information map
to guide the search task assignment for agents with heterogeneous motion and
sensing capabilities. We recall that, in the spectral decomposition of the informa-
tion distribution Eq.(2), lower-frequency coefficients correspond to larger-scale
variations in the spatial distribution of information, while higher-frequency co-
efficients correspond to smaller-scale variations.

Building upon this observation, we propose to define M spectral bands (i.e.,
sets of frequency coefficients within particular ranges), with M the number of
agent types in the heterogeneous team. Each band can be seen as a separate
(although not completely independent) search subtask that can be distributed
to a specific type of agent based on its motion/sensing capabilities to search
at a given spatial scale. In this work, we break down the overall set of spectral
coefficients into M successive bands of equal length, but other decompositions of
the set of coefficients into bands could be considered, and will be investigated in
future works. To help visualize the different search subtasks, resulting from such
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a choice of bands, we can reconstruct partial representations of the information
distribution, each based on a single band of coefficients, as shown in Fig. 2.

To formally define and use these search subtasks, we modify the ergodic
metric Eq.(2) to rely on a specific band of coefficients only:

Φ(γ(t)) =

c2∑
k=c1

λk |ck(γ(t))− ξk|2 , (4)

where c1 and c2 define the first and last coefficients of the spectral band. Note
that the same result could be achieved by setting λk = 0 ∀k < c1, k > c2.

4.2 Assignment of Agents to Spectral Bands

In order to find an optimized set of paths according to the new ergodic coverage
metric Eq.(4), we must first find an optimized assignment of agent types to
spectral bands which maximizes the search performance. To this end, we note
that these bands can first be distributed to heterogeneous agents based on their
sensing capabilities. For example, agents with low-fidelity, high-range sensing
capabilities should generally be assigned low-frequency spectral coefficients, as
expressed in Eq.(5) in order to perform large-scale, broad-stroke exploration.
Conversely, agents with high-fidelity, low-range sensing capabilities should likely
be assigned high-frequency spectral coefficients, as expressed in Eq.(6) in order
to perform detailed, small-scale exploration.

Φ(γ(t)) =

c1+c2
2∑

k=c1

λk |ck(γ(t))− ξk|2 , (5)

Φ(γ(t)) =

c2∑
k=

c1+c2
2

λk |ck(γ(t))− ξk|2 , (6)

Similarly, different motion models can also be used as a basis for task distri-
bution between the agents. For instance, we believe that faster agents, relying
on lower-frequency coefficients of the decomposition, could perform a coarse ex-
ploration of the domain. On the other hand, by relying on higher-frequency

Fig. 2. Example spectral reconstruction of a given map (center), based on only its
lower-order coefficients only (left), or higher-order ones only (right). Yellow regions
correspond to regions of high information, while darker blue regions correspond to
regions of low information (here, high/low likelihood of finding targets).
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coefficients, slower agents would be naturally driven to perform a smaller-scale,
detailed search. A similar intuitive assignment can be made when dealing with
agents with varying motion constraints. For example, given a team composed
of omnidirectional and maximal-curvature-constrained agents, our hypothesis is
that the former should rely on lower-frequency coefficients, while the latter can
more easily chain “spots” of information obtained from high-frequency bands.

5 Results and Discussion

We present our systematic investigation of four different ways agent types can
be assigned to search subtasks, by relying on a large set of simulation exper-
iments composed of fixed, randomly generated search problems. We compare
these assignment methods according to various standard search metrics, such as
the time to find all targets and the effectiveness of coverage (using the ergodic
metric), showing that our optimal assignment can yield up to 40% increase in
these metrics. Our results rely on sampling-based trajectory optimization, but we
emphasize that our investigation should extend to other optimization methods.

5.1 Agent’s Sensing and Motion Models

The sensor footprint of each agent is modeled as a Gaussian distribution cen-
tered at the agent’s position, whose variance prescribes a circular observation
range ρ > 0. At each point within this observation range, we use the Gaussian
probability density function to represent the likelihood of detecting a target at
each time step. We consider a mix of agents with low-range, high-fidelity sensors
(i.e., a Gaussian of low variance and thus higher maximal detection probability
at its center), and agents with high-range, low-fidelity sensors (i.e., a Gaussian
of larger variance and thus lower maximal peak detection likelihood).

In addition to the different sensing models, we also consider two types of
agents’ motion models. The first model is a simple first order integrator that
represents omnidirectional agents, such as quad-rotor UAVs or legged ground
robots. We further consider agents with differential drive constraints (i.e., result-
ing in curved paths with a maximum curvature), such as fixed-wing airplanes
or wheeled ground vehicles. We sample paths for the agents by sequencing path
primitives - straight lines of various directions and lengths for the omnidirec-
tional agents, and curves from a finite collection with various curvatures and
lengths for the differential agents. Agents plan long trajectories, execute these
paths for 10 timesteps, update the map using their observations, and then re-
plan. We further rely on a cross-entropy planner [31] to optimize the paths of all
agents via 3 levels of sample refinement with a total of 15 ·N samples (where N
is the total number of agents, N = 10 in practice).

5.2 Experiment Details

Scenarios Randomization We compare the performance of various assignment
methods, with that of a baseline that plans paths for all agents by relying on
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Fig. 3. Examples of the two classes (Gaussian Mixture Models (left), and road networks
(right)) of randomly generated information maps for evaluating the proposed approach.

the overall distribution maps (i.e., no decomposition into bands or assignments),
through 500 randomized search scenarios. These scenarios vary the locations
of targets and the initial information maps (as randomly generated Gaussian
mixture models, or road-network inspired information maps). Additionally, for
each experiment, a randomly generated team of 10 agents is formed by selecting
both the sensing and motion model with equal probability for each agent. Team
compositions, starting positions, initial information maps, and target locations
are kept identical among experiments with different controllers, to ensure our
results are comparable.

Agent Assignments In our experiments, we group together all agents with the
same motion and sensing constraints, thus yielding four independent agent groups.
We let A0 be the set of agents with low-fidelity, high range sensing capabil-
ities and fast, omni-directional motion models and A1 be the set of agents
with low-fidelity, high range sensing capabilities and slower, curve-constrained
motion models. Similarly, we let A2 and A3 be the sets of agents with high-
fidelity, low-range sensing capabilities and omni-directional motion models and
low-fidelity, high-range sensing capabilities and curve-constrained motion models
respectively. Finally, we decompose the information map into a set C of M spec-
tral coefficient bands - C0, ..., CM−1.In our experiments, we considered M = 4.
Assignments, i.e., mappings from agent types to spectral bands can be expressed
as:

h : Ai −→ X, X ∈ {C0, C1, C2, C3} (7)

Our optimal assignment, based on the intuition built in Section 4.2, can be
expressed as:

hoptimal(Ai) = Ci (8)

In order to investigate the effectiveness of the optimal assignment Eq.(8), we
compared its performance to that of more naive assignments Eq.(9), Eq.(10), as
well as to that of an adversarial assignment Eq.(11). Finally, we compare these
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Fig. 4. Search performance comparison between the different agent assignments and
the baseline, in terms of coverage performance (using the ergodic metric, lower is better)
and time to find all targets (lower is better).

results with a baseline that assumes all agents are identical (homogeneous team),
i.e., all the agents rely on the same, full spectral distribution of the information
map.

hnaive1(Ai) =


C0 i = 1

C1 i = 0

C2 i = 3

C3 i = 2

(9)

hnaive2(Ai) =


C0 i = 2

C1 i = 3

C2 i = 0

C3 i = 1

(10)

hadversarial(Ai) = C3−i (11)

Performance Metrics and Sensitivity to Hyper-parameters We ran another set
of experiments in order to investigate the sensitivity of this approach to hyper
parameters. There, we focused on the ratio of agents of different capabilities, the
total number of agents exploring the domain and the number of samples used in
each time step of the sample-based path planner.

All of these experiments were run on Gaussian information distributions and
road-network inspired information distributions (Fig.3) in an effort to simulate
potential use cases. The results of these two types of information distributions
are reported separately as their metrics distributions are significantly different,
although the overall performance improvement is similar.
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Fig. 5. Sensitivity to the team size, comparing the coverage performance between our
optimal assignment and the baseline. Gaussian maps (top), and road network (bottom).
As expected, note the improved performance for smaller teams.

5.3 Experimental Results

When looking at the results of the different assignments in term of overall cover-
age performance, measured via the ergodic metric, the first observation we can
make is that our optimal assignment, expressed in Eq.(4.2) results in approx-
imately 40% improvement over the baseline, while naive heuristics show ±5%
improvement and the adversarial heuristic yields approximately 25% deteriora-
tion in performance over the baseline approach (Fig.4). These results verify the
intuition built in Section 4.2. Our results also confirm an important point: more
effective coverage of the domain leads to finding targets faster.

As expressed in Section 4.2, we believe that lower order spectral bands pre-
serve broad domains of information. Therefore, agents with high-range sensing
capabilities and less constrained, motion models would be better suited to coarse
exploration as they are capable of covering larger areas quickly, with higher un-
certainty. On the other hand, higher order spectral bands preserve edges and de-
tails. Lacking more general information about the map means that there will be
more “false positive” areas, that is, more domains that show higher information
in this scale of spatial variation but not in the original. So, agents with high-
fidelity, low-range sensing capabilities seem better-suited to rely on the higher
order spectral bands, because, high-fidelity might only lead to false positives that
have less impact on the search. Smaller, more concentrated areas of information
in this spatial scale are thus better explored by agents with curve-constrained
motion models.

In the naive heuristics, agents rely on spectral bands that are well-suited to
either their sensing or motion capabilities but not to both. For example, in the
first naive heuristic Eq (9), agents with low-fidelity, high range sensing capa-
bilities and slow, curve-constrained motion models rely on the lowest frequency
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Fig. 6. Sensitivity to the number of sampled paths, comparing the coverage perfor-
mance between our optimal assignment and the baseline. Gaussian maps (top), and
road network (bottom). There again, and as expected, note that our distributed search
approach specifically improves performance with small numbers of samples.

spectral bands, which are well suited to their sensing capabilities but not to their
motion model. This kind of partially suitable mapping results in a performance
almost equivalent to the baseline, as this assignment drives agents to, on aver-
age, explore the information distribution in a similar manner as in the baseline
(i.e., there are no expected advantages over the baseline, but no clear downsides
either).

Finally, in the adversarial heuristic, agents rely on spectral bands worst-
suited to their sensing and motion capabilities. As expected, this mismatch leads
to a decrease in performance as agents struggle to search at the spatial scale
assigned to them, since it doesn’t match their capabilities. Some side-by-side
comparison videos of these methods in example scenarios can be found at http:
//bit.ly/DARS21-HetMASearch.

As expected, we further note that improvement in performance over the
centralized approach decreases as the number of agents covering the domain
increases (Fig.5). When there are fewer agents available to cover a domain, the
coverage efficacy of each agent’s path strongly influences the overall coverage of
the domain by the team, since each agent is effectively responsible for a larger
portion of the domain. However, when a large number of agents are covering a
domain, each agent is effectively responsible for a smaller portion of the domain,
so the effectiveness of the path of each agent has a negligible impact on the
team’s coverage of the domain.

Our results also indicate that improvement in performance over the central-
ized approach decreases as the number of samples taken in each step of the
sample-based path planner increases (Fig.6). We know that the path primitives
sampled by each agent at each step of the sample-based path planner depend on
the spatial scale at which the agent is searching. When there are fewer samples

http://bit.ly/DARS21-HetMASearch
http://bit.ly/DARS21-HetMASearch
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being considered at each step, the spatial distribution that the agent is relying
on has greater influence on the effectiveness of the sampled paths than when
a large number of samples are drawn. That is, in the limit where sampling is
performed on a near-infinite number of paths, decomposing the information map
should not lead to an improved solution (since the best sampled paths will be
globally optimal, and can also be found by the baseline approach). Thus, our
results show that distributing the correct spectral bands (i.e., search subtasks)
to the agents has more impact on the achieved coverage of a domain when plan-
ning paths using small numbers of samples. We envision this to be a significant
advantage, especially for robot deployments that necessitate real-time planning
and re-planning capabilities, where planning time is mainly controlled by the
number of samples to be drawn.

6 Conclusion

In this paper, we investigated the idea of leveraging the spectral nature of a
state-of-the-art coverage metric, the ergodic metric, to improve the heteroge-
neous multi-agent search of a domain by matching the agents’ motion and sens-
ing constraints to specific search subtasks. These subtasks were defined as per-
forming search at different spatial scales, by relying on a limited subset of the
spectral coefficients that represent the overall information map. After building
intuition on the link between sensing and motion models and the different search
scales based on subsets of coefficients, we proposed an agent assignment method
to map agent types to specific search subtasks (i.e., subsets of spectral coeffi-
cients). In our systematic numerical tests, we compared our optimal assignment
to naive and adversarial assignments, as well as to a baseline that plans paths for
all agents regardless of their individual capabilities, and showed our distributed
ergodic search approach lead to significantly improved performance (up to 40%),
both in terms of coverage efficiency and time to find all targets. Additionally,
our distributed approach allows sampled-based optimization methods to require
a smaller number of samples to find high-quality search paths, and improves
the performance of smaller agent teams, which might maximize its impact to
real-world multi-robot deployments.

This work paves the way for new heterogeneous multi-agent search methods,
where synergies among agents could be automatically identified and leveraged
to improve the efficacy of the process. In particular, future works will approach
the general problem of assigning any type of agent the right set of spectral
coefficients. To this end, and for general cases where human intuition/experience
cannot suffice, we believe that machine learning based methods could offer us
the tool to learn such a data-driven mapping. Furthermore, the work presented
in this paper considered centralized subtask assignment and path planning, but
our future work will seek decentralized task assignment (and potentially ergodic
path planning) solutions, to really allow such distributed heterogeneous multi-
agent search methods to scale to large teams, and ultimately allow large-scale
real-life deployments.
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