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Abstract— Many multi-robot deployments, such as auto-
mated construction of buildings, distributed search, or cooper-
ative mapping, often require agents to intelligently coordinate
their trajectories and form coalition over a large domain, to
complete spatially distributed tasks as quickly as possible. We
focus on scenarios involving homogeneous robots, but where
tasks vary in the number of agents required to start them.
For example, construction robots may need to collaboratively
air-lift heavy objects at different locations (e.g., prefabricated
rooms, crates of material/equipment), where the weight of
each payload defines the required coalition size. To balance
the total travel time of the agents and their waiting time
(before task initiation), agents need to carefully sequence tasks
but also dynamically form/disband coalitions. While simpler
problems can be approached using heuristics or optimization,
these methods struggle with more complex instances involving
large task-to-agent ratios, where frequent coalition changes are
needed. In this work, we propose to let agents learn to iteratively
build cooperative schedules to solve such problems, by casting
the problem in the reinforcement learning framework. Our
approach relies on an attention-based neural network, allowing
agents to reason about the current state of the system to
sequence movement decisions that optimize short-term coalition
formation and long-term task scheduling. We further propose
a novel leader-follower technique to boost cooperation learning
and compare our performance to conventional baselines in a
wide variety of scenarios. There, our method closely matches or
outperforms the baselines; in particular, it yields higher-quality
solutions and is at least 2 orders of magnitude faster than exact
solver in cases where frequent coalition updates are required.

I. INTRODUCTION

Due to the often limited capabilities of individual robots,
forming teams of robots that are able to work together on
tasks provides substantial advantages for many practical ap-
plications such as aerial construction of 3D structures [1] (see
Fig. 1), cooperative object transport [2], and inspection of
industrial machinery [3]. These applications often consist of
many spatially-distributed tasks with each of them requiring
a specific number of agents to initiate and subsequently work
together to complete the task. In such scenarios, agents can
distribute themselves into teams (i.e., coalitions) to simul-
taneously work on different tasks in order to minimize the
overall task completion time (i.e., makespan). For example,
in scenarios involving aerial robotic construction, a group
of UAVs might engage in lifting or building tasks across a
large area. Depending on the task requirements (e.g., carrying
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Fig. 1. Multiple drones can dynamically form coalitions to finish spatially-
distributed tasks in a cooperative construction scenario.

different weights, bracing complex structures), agents may
need to form coalitions of varying sizes. Furthermore, after
the completion of a task, agents may need to adapt coalitions
to proceed toward the remaining tasks based on their spatial
locations and requirements. By forming coalitions dynami-
cally, agents seek to strike a balance between traveling times
among different tasks and waiting time before all agents are
ready to initiate a task, especially for task-to-agent ratio.

Allocating tasks to agents while minimizing some cost (the
makespan in our case) is a challenging problem, formally
known as Multi-Robot Task Allocation (MRTA). According
to Gerkey et al.’s [4] taxonomy of MRTA problems, our work
falls under the category of ST-MR-TA, where each robot
can perform only one task at a time (ST), each task can
require the cooperation of multiple robots (MR), and task
allocation continuously happens across time (TA). Existing
works on ST-MR-TA can be broadly classified into heuristic
methods [5], [6], [7], market-based methods [8], and mixed-
integer programming (MIP) [9], [10]. Many works like [5],
[11] have explored coalition formation among agents in
scenarios with high task-to-agent ratios. However, these algo-
rithms often do not consider any minimum coalition size for
task execution which is important for real-life applications.
Other methods have been proposed to assign the best possible
coalition and routes to robots [9], [6], [10], but these methods
either primarily focus on one-shot assignment, or do not scale
well to large instances as complexity increases exponentially
to obtain optimal solutions, or even any solution, under
time constraints. In scenarios that involve numerous tasks,
time-critical situations, or even dynamically appearing tasks,
having a fast solver that can guarantee high-quality solutions
becomes of utmost importance for frequent replanning.

In this work, we propose a novel reinforcement learning
(RL) approach through which agents (i.e., robots) can ob-



tain decentralized policies to solve the ST-MR-TA problem.
Specifically, agents learn to reason about their position, the
status of all tasks, as well as the position and short-term
intent of other agents, to make reactive movement decisions
(i.e., which task to travel to and complete next). By choosing
to converge to/diverge from tasks, agents naturally form
coalitions and disband during task selection, iteratively con-
structing cooperative schedules. To train this collaboration
in such a large multi-agent state-action space, we further
propose a mechanism to reduce the decision complexity
during training. Specifically, upon task completion, a random
“leader” agent is selected from that coalition; this agent
selects the next task, and all other “follower” agents are
automatically driven to follow it to that new task (up to
task requirements). Any agents left then select their next
task in the same manner. In doing so, agent decisions are
naturally linked, thus boosting cooperation learning. During
policy execution, however, each agent uses its own learned
policy to make individual decisions (no leader-follow mech-
anism), which our results show still yields similar perfor-
mance. Using our approach, agents are able to collaboratively
construct high-quality/near-optimal routes much faster than
existing optimization methods relying on pre-training and
low inference time, making our approach appealing for
deployments in dynamic scenarios where frequent replanning
might be necessary. We conduct experiments and compare
our approach with state-of-the-art methods on randomly
generated instances ranging from 10 to 40 agents and 20
to 200 tasks. Our results show that our approach can match
or outperform an exact, MIP-based solver [9] while reducing
computation times by at least two orders of magnitude, and
outperforms heuristics methods in most cases where frequent
coalition updates are required.

II. RELATED WORK

A. Task allocation and task scheduling

Korsah et al. [12] expanded on the taxonomy introduced
in [4] by incorporating interrelated utilities and constraints of
robots and tasks in MRTA problems. This work falls under
the category of ST-MR-TA with cross-schedule dependencies
(XD) referred to as XD[ST-MR-TA], which indicates that
the suitability of an agent for a particular task is not
solely determined by its own schedule but also relies on
the schedules of other agents within the system. Existing
methods to solve XD[ST-MR-TA] problems can be generally
categorized into integer programming [10], [13], [9], heuris-
tics [7], [6], and auction-based methods [14], [8]. For exam-
ple, Korsah et al. [10] first proposed a MIP-based anytime
task allocation and scheduling planner for problems with
cross-schedule dependencies, where different tasks may have
synchronization constraints for initiation and time-window
requirements for completion. Recently, Fu et al. proposed a
scheduling framework utilizing MIP for heterogeneous robot
teams [9], which addresses task decomposition, assignment,
and scheduling problems while accounting for uncertainty in
agents’ abilities and task requirements. However, such MIP-
based approaches do not scale well to large problems, as

their computing times can reach/exceed tens of minutes on
realistic instances, also limiting their application in dynamic
scenarios. Different from exact solvers, Ferreira et al. [7]
proposed a heuristic method in which they first decompose
the task into robot actions and solve the problem as a Vehicle
Routing Problem (VRP), thus existing VRP algorithms [15],
[16], [17] could be applied. In addition, auction-based meth-
ods [14], [8] are often decentralized. However, agents tend
to be competitive or greedy when placing their bids, which
can result in degraded performance. For more complex cases
beyond task decomposition and uncertainty, some studies
address constraints like task precedence (i.e., order or priority
of task execution) for ST-MR-TA problems [18], [19], [20],
[21]. While beyond the scope of our current work, it is
worth noting that our agents make reactive decisions while
considering task executability. By dynamically changing task
availability, agents have the potential to naturally address
additional constraints such as task precedence.

B. Learning-based routing and scheduling

Traditional optimization methods, while efficient for solv-
ing small-scale problems and yielding exact/near-optimal
solutions, encounter significant challenges when applied to
large-scale instances as the computation time tends to ex-
perience exponential growth with problem size. Therefore,
many recent approaches have proposed to rely on deep rein-
forcement learning (dRL) to solve such problems in a data-
driven way for rapidly finding high-quality solutions. Narzri
et al. first proposed an end-to-end VRP framework [22],
which relies on learned attention mechanisms to solve such
optimization problems. Cao et al. [23] further proposed an
RL-based decentralized sequential decision-making method
for the multiple traveling salesman problem (mTSP). These
approaches exhibit great scalability and are able to generate
near-optimal solutions through a Transformer-style network
with very short computation time, particularly for large
instances. Recently, Agrawal et al. [24] addressed task as-
signment in warehouse using an attention dRL approach,
but only focused on single-agent tasks without cooperation.
Similarly, some works [25], [19] proposed an RL-based
scheduler to tackle scheduling problems under precedence
constraints, which showed great generalization to different
routing and scheduling problems. However, these works only
consider agents who work as individuals, and challenges in
coalition formation have not been tackled yet.

III. PROBLEM FORMULATION

We consider a team of n homogeneous agents A =
{a1, a2, . . . , an} starting from a depot k0. These agents need
to complete m tasks {k1, k2, ..., km} spatially distributed
within a given 2D domain, and finally return to the depot k0.
Without loss of generality, the domain is normalized to the
[0, 1]× [0, 1] ⊂ R2 area. The depot and tasks are represented
as a node set K = {k0, k1, k2, . . . , km}, each node kj ∈ K
located at position (xkj

, ykj
). Each task kj is associated a

requirement ckj
and duration wkj

, where ckj
∈ N+ indicates

the number of agents required to start it, and wkj
∈ R+



the time needed for such a coalition (once assembled) to
complete the task. Agents are always in one of three states: 1)
waiting for other agents to initiate a task, 2) executing a task,
or 3) traveling from one task to another, which is performed
through a straight line (Euclidean distance between tasks)
at constant speed v. A solution is a set of individual agent
tours Φ = {ϕa1

, . . . , ϕan
} that allows agents to complete all

tasks based on their requirements and return to the depot,
where each tour ϕai = (k0, ki1 , ki2 , . . . , k0) is a set of
non-repeating node (except for the depot). The makespan
of a solution is the longest tour duration among all agents,
where individual tour duration is calculated as the sum of the
agent’s task execution times, travel times, but also waiting
times (between its arrival to a task and that of its last
taskmate, which depend on the tours of other agents). Our
objective is to find a solution with minimal makespan.

IV. METHODOLOGY

In this section, we frame our multi-robot task allocation as
an RL problem and provide network and training specifics.

A. Multi-Robot Scheduling as an RL problem

We frame our problem as a decentralized sequen-
tial decision-making problem. Each agent ai sequentially
chooses its next task upon completion of its current one, thus
iteratively constructing its own tour ϕai

until all tasks have
been completed and all agents return to the depot. Agents
select their next tasks in a sequentially-conditional manner,
considering the actions already taken by all other agents. To
do so, after an agent makes a decision and travels to the next
task, we directly update its location to that of the selected
task, which informs the entire team of its decision. In our
problem, agents often make decisions asynchronously, as the
task completion time is rarely identical among parallelly
running tasks. However, all agents in the same coalition
will make decisions at the same time after completing their
common task. In this case, agents make decisions in the order
of their arrivals at that task.

To speed up the training and simplify decision-making,
we introduce a leader-follower decision framework. In this
framework, leaders are iteratively chosen to make decisions
for a (sub)group of fellow agents. For instance, if a coalition
of five agents completes a task, a leader will be randomly
selected to decide the next task which requires a particular
number of agents (e.g., three). Subsequently, a subset of
agents in the original coalition (here, the leader and two other
randomly picked agents) will move on to this next task, while
the remaining agents (here, two) will choose their next task in
the same leader-follower way, conditioned on the decisions
made by the previous agents. By reducing the number of
decisions during training, agents learn policies with lower
variance and greater efficiency. In addition, learned policies
can be utilized in a decentralized manner where each agent
makes individual decisions.
B. RL formulation

1) Observation: The observation of agent ai at time t
is oti = {Gt

i, A
t
i,M

t}, and includes three components: i)

an augmented graph Gt
i of all tasks associated with ai,

ii) the current state of all agents At
i, and iii) a binary

mask M t. In our problem, we define tasks on a complete
planar graph G = (K,E), where the vertices K is the set
of tasks (and depot) nodes and the edges are denoted as
(ki, kj) ∈ E,∀ki ̸= kj , where ki, kj ∈ K. An augmented
graph Gt

i = (Kt
i , E) is used to describe the state of all

tasks with respect to agent ai. Each vertex in Gt
i is denoted

as ktji = (xkj
− xai

, ykj
− yai

, ckj
, wkj

, ckj
− gkj

), where
j ∈ {0, 1, 2, . . . ,m}, (xkj

, ykj
) and (xai

, yai
) are the coor-

dinates, ckj is the task requirement, wkj the task duration,
and gkj the number of agents that currently have been
assigned to this task. The depot is a special case, for which
kt0i = (xk0

−xai
, yk0

−yai
, 0, 0, 0). At

i contains information
that pertains to the state of each agent with respect to the ego
agent ai with atji = (xaj−xai , yaj−yai , baj , daj , eaj , naj ) ∈
At

i, where j ∈ {1, 2, . . . , n}, baj is the time required for
agent aj to reach its next task (or 0 if the agent is currently
at a task), daj

is the time agent aj has spent waiting on
the current task so far (0 if the agent is traveling/executing
a task), eaj is the remaining time to complete agent aj’s
current task (0 if traveling/waiting), while naj ∈ {0, 1}
indicates whether the agent has already selected a task. The
binary mask M t ∈ Rm+1 is shared among all agents, where
each component represents whether the corresponding task
has already been completed (1) or not (0).

2) Action: At each decision step t of agent ai, given
its current observation oti, our decentralized neural network
parameterized by θ outputs a stochastic policy pθ (a | oti) =
pθ (τt = j ∈ E | oti) over all tasks, where finished tasks are
filtered using the mask Mt. We sample agent ai’s action from
pθ (a | oti) following a multinomial probability distribution
during training, and select action greedily at inference time.

3) Reward: In our problem, the objective is to minimize
the time needed for the team to complete all tasks and return
to the depot (makespan). We simply define a sparse reward
calculated at the end of the training episode as R(Φ) = −T ,
where T is the makespan. In addition, we incorporate a time-
out for each episode to prevent deadlocks, where deadlocks
may occur as agents cannot finish an episode due to poor
coordination (which happens earlier on during training).
C. Policy network

We use an attention-based network with a encoder-decoder
architecture to learn the agents’ policies πθ (a | oti), as de-
picted in Fig 2. The network parameters are shared among
all the agents. We rely on a group of encoders to extract
salient features, allowing agents to build context across the
entire system. This shared context enhances communication
among agents, enabling them to predict each other’s intent
and facilitate cooperation. Then, a group of decoders will
leverage the learned representations from encoders (i.e., the
features of position, task execution status, and travel times,
etc.) and reason about potential benefits and costs associated
with each task to help agents make informed decisions.
Finally, a task selector outputs a probability for an agent
to choose from an arbitrary number of tasks. We address
scalability issues by leveraging the attention-based networks.
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Fig. 2. Network structure. The raw information of tasks and agents is first projected into embeddings and then passed to a group of encoders to build
context. In the decoder, this context is then fused with the average of task embedding thus generating a global glimpse of the full system. Finally, we use
a task selector to output a probability distribution for an agent to choose the next task.

1) Multi-head attention with gated linear unit: The multi-
head attention layer [26] is a vital component of our network.
We further integrate a gated mechanism [27] into the atten-
tion layer to obtain better representations. In each layer, the
zth head takes query hq = [hq

1, h
q
2, . . . , h

q
n]

T and key-value
pairs hk,v = [hk,v

1 , hk,v
2 , . . . , hk,v

n ]T , transformed by three
learnable matrices, to calculate an attention vector αz:

Qz,Kz, Vz = WQ
z hq,WK

z hk,v,WV
z hk,v (1)

αz = Attention(Qz,Kz, Vz)

= Softmax(QzK
T
z /

√
d)Vz,

(2)

MHA
(
hq, hk,v

)
= Concat (α1, α2, . . . , αZ)W

O, (3)

where WQ,WK ∈ RZ×dim× dim′
,WV ∈ RZ×dim× dim′

,
dim′ = dim/Z, and Z is the number of heads (in practice,
h = 8). The output vector will be first passed to layer
normalization, followed by a feed-forward layer with a gated
linear unit [27]. When hq and hk,v are the same, it is a self-
attention layer as MHA(hq).

2) Encoder: In our work, we design a set of encoders
including an agent encoder, task encoder, and task-agent
cross encoder to integrate information, which allow each
agent to build context about the full state of the system. For
example, through learned attention mechanisms, the encoders
implicitly help agents identify potential collaborators to form
coalitions and complete a given task, and/or to predict the
long-term impact of choosing a specific task on the other
tasks. The raw inputs of the agent observation oti are first
passed into linear projection layers, yielding d-dimensional
(in practice, d = 128) embeddings denoted as hK and hR for
tasks and agents, respectively. These embeddings are further
refined to establish correlations among each agent and each
task through agent/task encoder as feature representations,
h′
A = MHA(hA) and h′

K = MHA(hK), where hA and
hK are queries fed into self-attention layers, respectively. To
derive a simplified vector that captures all task information
and summarizes the agent’s current state, we calculate an
aggregated graph embedding, represented as the mean of
all task embeddings h̄K = 1

m+1

∑m+1
1 hki

. Finally, we use
a task-agent cross-attention encoder to build dependencies
between tasks and agents as h′

KA = MHA(h′
K , h′

A).

3) Decoder: We design our decoders to extract valuable
features out of representations while preserving a global
consideration of the task and agent dependencies and finally
output a probability distribution for selecting the best next
task. The aggregated graph embedding h̄K is passed to
message fusion layers with agent representations h′

A as h̄′ =
MHA(h̄K , h′

A). Then the output will go through state fusion
layers to revise the current feature h̄′′ = MHA(h̄′, h′

KA). So
far, we have computed enhanced features as a global glimpse
that leverages the collective information from all tasks and
agents. Finally, we use a simple single-head attention layer to
calculate the attention score among the global glimpse and
task-agent representations with a mask M t. By removing
already-completed tasks, we use the attention score as the
probability of selecting each task.

D. Training

We train our policy using the REINFORCE [28] algorithm
with greedy rollout baseline [23], [29]. Specifically, our
method relies on two neural networks: a policy network,
denoted as pθ, which outputs a probability distribution over
the all tasks based on the agent’s current observation at
each decision time, and a baseline network, denoted as pb,
which calculates a baseline reward by having each agent
select its next task greedily (for a copy of the same exact
instance/episode). This training algorithm helps reduce the
variance of gradients and does not require explicit state value
estimation. The gradient of the final loss function reads:

∇θL = −Epθ(Φ)

[
(R(Φ)−R(Φb))∇θ log pθ (Φ) | ot=0

]
,

(4)
where the Φ and Φb are the group tours generated by the
policy and the baseline networks, respectively. Furthermore,
we frequently conduct a paired t-test to determine whether
the baseline network should be replaced. We compare the
performance of the policy network and the baseline network
on a randomly generated test set, and then replace the
weights of the baseline network with those of the policy
network when the latter significantly outperforms the former
(based on the condition T-Test (R(Φ), R(Φb)) < η, where
η = 0.05 in practice). During training, agents rely on
our leader-follower based coordination learning techniques;
there, only the leader’s decisions are used for training, which



we observed helps enhance sample efficiency and stabilize
the training.

TABLE I
PARAMETERS OF TEST SCENARIOS

Trained Scenarios Unseen Scenarios
Task-to-agent m n Task-to-agent m n ck wk

30 100 10

[1,5] [0,5]
6 20 10 15 100 20

15 50 10 10 100 30
7.5 50 20 7.5 100 40

15 200 40

Agent / Coalition
Unfinished tasks
Finished tasks
Agent Trejectories

Depot

2 agents
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coalition

single agent
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Fig. 3. An example of our task environment. The red circle represents
a depot, triangles are agents or coalitions, and polygons with more than
three vertices are spatially distributed tasks. The number of vertices nv in
a polygon indicates task requirements ckj

, where nv = ckj
+ 3. Agents’

trajectories are shown in lines.

V. EXPERIMENTS

In this section, we detail our training/testing setups. We
compare our method against the MIP-based approach and
heuristic baseline in terms of solution quality, generalization,
and computation time across a large range of scenarios with
varying sizes. In doing so, we aim to provide an in-depth
analysis of the strengths and weaknesses of our method under
different scenarios. The code can be found on https://
github.com/marmotlab/DCMRTA.git

A. Experimental Setting

We train our policy on scenarios with varying numbers of
tasks (ranging from 20 to 50) and agents (ranging from 10 to
20). Specifically, we uniformly generate positions of depot
and tasks (xki , yki) within our [0, 1] × [0, 1] domain. Each
task requirement cki

is randomly drawn within {1, ..., 5},
while task duration wki

is sampled from a uniform distri-
bution [0, 5]. All agents move at a constant speed v = 0.2.
We further set a timeout tmax = 100 to terminate episodes
where deadlocks occur and agents are unable to finish any
more tasks. We train our policy using the Adam optimizer
with a learning rate r = 10−5 which decays by 0.98 every
2000 episodes. The baseline network is compared with the
policy network every 1024 episodes.

To evaluate the performance of each method, we generate
unseen test scenarios in a similar way to training data
with parameters detailed in Table I, where each scenario
comprises 50 instances. We define the average task-to-agent
ratio as γ = 1

n

∑j=m
j=1 ckj

. We present a simulation of our
experimental environment in Fig. 3.

TABLE II
AVERAGE PERFORMANCE COMPARISON ON DIFFERENT SCENARIOS.

Method Success Rate Makespan AWT Time

n=10
m=20
γ = 6

CTAS-D 100% 29.768 (± 3.338) 2.586 (± 1.146) 300s
OR-Tools 100% 40.249 (± 4.493) 2.953 (± 1.264) 20s

RL-LF (ours) 100% 31.531 (± 3.243) 2.464 (± 0.697) 0.13s
RL-IA (ours) 100% 33.1 (± 4.329) 3.964 (± 2.356) 0.33s

n=10
m=50
γ = 15

CTAS-D 70% 70.29 (± 10.182) 10.233 (± 4.131) 3600s
OR-Tools 100% 77.888 (± 6.718) 6.014 (± 1.298) 20s

RL-LF 100% 65.92 (± 6.48) 6.014 (± 1.298) 0.36s
RL-IA 100% 67.583 (± 7.515) 8.787 (± 3.299) 0.82s

n=20
m=50
γ = 7.5

CTAS-D 100% 36.908 (± 3.754) 5.619 (± 1.767) 300s
CTAS-D 100% 34.353 (± 3.122) 4.181 (± 0.989) 1800s
OR-Tools 100% 41.967 (± 4.405) 0 (± 0) 20s

RL-LF 100% 34.827 (± 3.251) 2.464 (± 0.697) 0.38s
RL-IA 100% 35.697 (± 3.262) 2.798 (± 0.799) 0.88s

n=10
m=100
γ = 30

CTAS-D 0% / / 3600s
OR-Tools 100% 145.364 (± 20.33) 18.133 (± 9.957) 20s

RL-LF 100% 124.875 (± 7.909) 16.067 (± 3.652) 0.80s
RL-IA 96% 129.712 (± 9.69) 20.201 (± 5.609) 1.93s

n=20
m=100
γ = 15

CTAS-D 62% 71.573 (± 6.731) 15.136 (± 4.059) 3600s
OR-Tools 100% 74.096 (± 6.765) 0 (± 0) 20s

RL-LF 100% 62.782 (± 4.164) 5.618 (± 1.328) 0.85s
RL-IA 100% 62.77 (± 4.12) 5.543 (± 1.241) 1.69s

n=30
m=100
γ = 10

CTAS-D 98% 55.155 (± 5.828) 13.727 (± 3.938) 900s
CTAS-D 100% 46.325 (± 3.876) 7.954 (± 1.915) 3600s
OR-Tools 100% 48.944 (± 5.595) 0 (± 0) 20s

RL-LF 100% 44.242 (± 2.756) 3.542 (± 0.618) 0.91s
RL-IA 100% 44.582 (± 2.854) 3.692 (± 0.805) 1.97s

n=40
m=100
γ = 7.5

CTAS-D 98% 42.371 (± 4.566) 9.116 (± 2.963) 900s
CTAS-D 100% 35.474 (± 2.427) 5.271 (± 1.299) 3600s
OR-Tools 100% 35.575 (± 3.525) 0 (± 0) 20s

RL-LF 100% 35.531 (± 2.327) 2.537 (± 0.489) 0.93s
RL-IA 100% 35.435 (± 2.252) 2.634 (± 0.539) 2.01s

n=40
m=200
γ = 15

CTAS-D 0% / / 3600s
OR-Tools 100% 63.044 (± 6.988) 0 (± 0) 20s

RL-LF 100% 64.328 (± 3.699) 6.199 (± 0.746) 2.35s
RL-IA 100% 64.742 (± 3.627) 6.302 (± 0.735) 4.94s

B. Comparison Analysis

We use the model trained following Section IV for all
the test scenarios, under both decision strategies: leader-
follower (RL-LF) and individual actions (RL-IA). In the RL-
IA approach, each agent independently selects its next task
at each decision step in a fully decentralized manner (no
leaders). To evaluate the effectiveness of our method, we
compare our approach to two conventional solvers, CTAS-
D [9] and OR-Tools [15].

CTAS-D relies on a state-of-the-art MIP exact solver,
Gurobi. It employs a two-step approach: it first optimizes
the agent flow to complete all tasks, before rounding and
splitting this agent flow into integers to obtain optimal
tours. OR-Tools is an optimization tool that uses meta-
heuristic algorithms to initially generate a solution, followed
by refinement using local search to ultimately achieve a
(near-)optimal solution. By partitioning agents into fixed-
sized coalitions according to task requirements and durations,
we use OR-Tools to minimize the maximum sum of travel
and task execution times in each coalition, thereby generating
a tour for each agent. CTAS-D is implemented in C++ and
uses 8 CPU threads dedicated to optimization, while the OR-
Tools and our variants are implemented in Python. We set
a maximum computation time of one hour for CTAS-D and
20s for OR-Tools, with the goal of generating solutions of
the highest possible quality for each method.

We evaluate all four methods on the same (randomly gen-
erated) test scenarios and report the success rate, makespan,
average waiting time (AWT), and computation cost (Time)
in Table II. The success rate indicates the percentage of
instances for which the solver can generate a feasible solution



(higher is better). For makespan, lower is better. Average
waiting time represents the average duration that an agent
waits before it can start a task (lower is better).

1) Solution quality: For smaller-scale instances with
lower task-to-agent ratio (e.g., m = 20, n = 10, γ = 6),
CTAS-D performs best since these problems do not require
high computation costs and can yield near-optimal solutions
in reasonable times. However, our RL method achieves
similar performance with only a 5.9% performance gap
compared to CTAS-D in these scenarios. As the task-to-agent
ratio increases, particularly for medium-scale and larger-
scale problems (e.g., m = 200/100/50, n = 10/20/40,
γ ≥ 15), we observe a significant drop in performance
and an increase in variance resulting from CTAS-D yielding
solutions of inconsistent levels of optimality due to the time
budget. Specifically, in cases with a large task-to-agent ratio
(γ = 30), CTAS-D cannot even generate a feasible solution
within one hour, while our RL method outperforms both OR-
Tools and CTAS-D. These large task-to-agent ratio scenarios
pose significant challenges because of the combination of
a large number of tasks, high task requirements, and a
limited number of available agents. In such cases, agents are
required to dynamically form coalitions and disband in order
to minimize traveling and waiting times, naturally increasing
the optimization complexity for these baselines.

On the other hand, we observe that OR-Tools marginally
outperforms the other approaches in scenarios with large
numbers of agents and tasks (e.g., m=40, n=100/200). How-
ever, there again, our method can still generate high-quality
solutions within a 2% gap. In these scenarios, dynamic
coalition formation cannot significantly improve cooperation,
because the number of agents is sufficient to optimally
partition them into fixed coalitions. Thus, waiting times
can be eliminated without any significant loss in overall
performance, and task execution times are optimized.

In addition, our method achieves a considerably lower
average waiting time compared with CTAS-D. By allowing
agents to reason about the full state of the system to build
context, they learn to consider not only their own states
but also the intentions of other agents and the overall task
completion status, enabling agents to sequence informed and
reactive decisions. For example, agents can synchronize their
arrival to common tasks, and in some cases, even if it entails
traveling longer distances, agents can assist other waiting
agents to avoid significantly longer waiting times/makespan.

2) Generalization: We train our policy only on small
instances, our trained, decentralized policies can generalize
to instances with any number of agents and tasks, relying on
a transformer-based structure. From our results, we observe
a linear relationship between the task-to-agent ratio γ and
makespan. This suggests that our method scales linearly with
respect to the instance size and achieve good generalization
in all scenarios while maintaining the high solution quality.

Second, we further compare our RL-IA and RL-LF vari-
ants. These two variants perform very similarly, with only
a very marginal edge for RL-LF over RL-IA (single-digit
percent improvements at most). There, our results show that

Fig. 4. A ROS Simulation of Crazyflie

agents can make fully independent/decentralized decisions
without any retraining or fine-tuning, without any remnant
from the leader-follower technique used during training.

Lastly, we evaluate our trained policy in large-scale in-
stances involving up to 300 agents and 1000 tasks. Here, OR-
Tools cannot deploy all agents, and CTAS-D cannot yield any
solution within the time budget. However, we only observe
slight performance decline in our method.

3) Computation time: Our method can generate high-
quality solutions at least 2 orders of magnitude faster than
the exact solver, and yet achieve similar performance. This
significantly strengthens our method’s ability to handle dy-
namic/uncertain environments, where frequent replanning
may be necessary, e.g., as new tasks may randomly appear
(or as task requirements may be uncertain/changing), or as
agents may break down or be added to the team. We believe
that this makes our approach more appealing for real-world
deployments on robots under realistic settings.
C. Experimental validation

We validate our method in a multi-agent cooperative
construction scenario using ROS as shown in Fig. 4, where
agents (drones) must navigate between tasks (cones) to
complete them. We further conduct experiments in an indoor
environment (approximately 5m × 5m), where we deploy a
few Crazyflie drones tasked with completing several spatially
distributed tasks under onboard motion tracking. The video
of our experiments is available as supplemental materials.

VI. CONCLUSION

This work introduces a decentralized reinforcement learn-
ing approach for efficiently solving the XD[ST-MR-TA]
problems, where each agent iteratively and reactively con-
structs its tour based on global observations and a learned
attention over all tasks and agents. We further stabilize
cooperative learning by implementing a leader-follower tech-
nique, which reduces decision complexity and help attain
the final policy that is fully decentralized and applicable
to problems of arbitrary sizes. Based on evaluation results,
we show our approach exhibits excellent performance in
scenarios with large task-to-agent ratios, whereas in smaller-
/larger-scale problems, we are still within a few percent gap
of the state-of-the-art baselines.

In future work, we are interested in extending our approach
to tackle more complex MRTA problems, such as hetero-
geneous agent teams and task precedence, which present
more challenging scenarios for coalition formation and task
decomposition problems.
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