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Abstract— The multi-agent pathfinding (MAPF) problem
seeks collision-free paths for a team of agents from their current
positions to their pre-set goals in a known environment, and is
an essential problem found at the core of many logistics, trans-
portation, and general robotics applications. Existing learning-
based MAPF approaches typically only let each agent make
decisions based on a limited field-of-view (FOV) around its
position, as a natural means to fix the input dimensions of
its policy network. However, this often makes policies short-
sighted, since agents lack the ability to perceive and plan for
obstacles/agents beyond their FOV. To address this challenge,
we propose ALPHA, a new framework combining the use of
ground truth proximal (local) information and fuzzy distal
(global) information to let agents sequence local decisions based
on the full current state of the system, and avoid such myopicity.
We further allow agents to make short-term predictions about
each others’ paths, as a means to reason about each others’
path intentions, thereby enhancing the level of cooperation
among agents at the whole system level. Our neural structure
relies on a Graph Transformer architecture to allow agents to
selectively combine these different sources of information and
reason about their inter-dependencies at different spatial scales.
Our simulation experiments demonstrate that ALPHA outper-
forms both globally-guided MAPF solvers and communication-
learning based ones, showcasing its potential towards scalability
in realistic deployments.

I. INTRODUCTION

As artificial intelligence (AI) improves by leaps and
bounds, robots/agents, now more than ever, can be deployed
in man-made structures such as warehouses, seaports, and
airports [1], [2], [3], [4], to assist with the transportation of
goods and personnel. In such cases involving multiple agents
within a known, static environment, an essential sub-task is
to plan collision-free paths for all agents from their current
positions to their pre-set goals [5]. This problem is known
as Multi-Agent Pathfinding (MAPF).

The evolution of neural networks has impacted MAPF by
introducing learning-based approaches, leading to a growing
trend within the community to develop such methods. How-
ever, unlike traditional planners that have access to global
states and give complete solutions [6], [7], [8], [9], [10],
most existing learning-based planners rely on limited field-
of-view (FoV) to make local plans. Although this reliance
can lead to myopicity, particularly in highly structured envi-
ronments where distant obstacles/agents should be taken into
account for the planning, existing learning-based solutions
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Fig. 1. Most of the existing learning-based MAPF methods rely on limited
FOV, which makes the agent lack the ability to perceive and consider the
environment beyond the FOV and thus leads to short-sighted policies (left
example), while ALPHA enables the agent to perceive global information
and consequently to make the right decisions (right figure).

still heavily depend on limited FoV due to the constraints
posed by the input dimensions of Convolutional Neural
Networks (CNNs) [11]. In order to provide agents with
more information beyond the confines of their FoV, current
methods either use part of expert paths within the FoV or
let agents communicate with each other [12], [13]. However,
these methods implicitly exploit partial slices of the global
map rather than encoding the whole map. Consequently, the
challenge at hand is how to encode and distill the vast global
information into abstract forms that can explicitly assist
agents in long-horizon planning. To address this problem,
we introduce ALPHA, a novel MAPF planner which uses
our proposed augmented graph representation to capture
global map states and employ an attention-based network
to achieve context learning by reasoning about nodes’ inter-
dependencies.

Our key insight revolves around creating a low-
dimensional representation of the global map to grasp the
map structure and other agents’ intentions, which prevents
the raw data from overwhelming and confusing the network
due to its dense features. We split the global information
into more learnable static and dynamic channels, improving
the ability of agents to understand the structure of the map
and infer the intentions of other agents. To tackle static
obstacles, we design a graph representation of the global map
that incorporates handcrafted features for extracting structure
formed by interconnected static obstacles in highly structured
maps. For the dynamic side, we assume that the dynamic
uncertainty in the environment solely arises from the move-
ment of fellow agents, without the presence of unmodeled
dynamic obstacles. Therefore, for dealing with other agents,
we develop another graph that encapsulates the short-term
intention of each agent. To process these graphs, ALPHA



utilizes attention mechanisms to help the network priori-
tize critical nodes, connections, and contextual information,
which enables agents to better reason about more important
regions to aid decision-making. Experimental results show
that with the help of these additional global graphs, ALPHA
outperforms state-of-the-art non-communication learning-
based MAPF solvers in both random, warehouse, and highly-
structured maps (e.g. room-like environments with space-
limited doors and narrow corridors). Even in congested traffic
scenarios, ALPHA demonstrates comparable performance to
the latest communication-based MAPF solvers.

II. RELATED WORK

In recent years, there has been growing interest in using
machine learning techniques to solve MAPF. These learning-
based methods can be broadly categorized into three types:
relying solely on local information, combining with global
guidance, and incorporating agents’ communication.

Methods relying solely on local observations, such as our
previous work PRIMAL [14], utilize reinforcement learning
(RL) and imitation learning (IL) to provide fully decentral-
ized solutions. PRIMAL2 [15] extends this characteristic to
the life-long MAPF problem, allowing agents to learn con-
ventions that structure and coordinate their paths. The local
observations proposed by PRIMAL have demonstrated out-
standing performance, inspiring many subsequent approaches
to adopt this representation method. Building upon local
observations, some researchers have proposed to incorporate
global guidance to enhance agent performance, as seen in
MAPPER [16] and G2RL [17]. However, these methods
often drive agents to follow the path generated by expert
single-agent algorithms to various extents, which may reduce
coordination and lead to more rigid decision-making. The
third class of approaches uses communication learning to
exchange information with each other and achieve better in-
dividual decision-making and group coordination [18], [19].
Although communication learning enhances the accuracy of
agent dynamics, the static map structure is still indirectly
accessed through other agents’ FoV. Thereby, due to the
challenge of directly integrating whole map information
with different spatial scales into neural network frameworks,
these methods still use field-of-view-based representations to
capture slices of global information locally. While this means
might entail information loss beyond the selected slice, it is
still a general method in state-of-the-art learn-based MAPF
solvers because it is a natural means to fix the neural network
input dimension.

Unlike previous methods, ALPHA proposes to encode
global information and combines it with local observations
directly without any slicing or reduction of global informa-
tion. Moreover, ALPHA does not explicitly require agents to
follow expert paths, which potentially enhances the flexibility
and coordination of agent decisions. This paradigm provides
agents with more comprehensive and long-term information,
enabling agents to make better planning decisions.

III. PROBLEM STATEMENT

A. MAPF Problem Formulation

In the MAPF problem, we have n agents A = {a1, ..an}
and an undirected graph G = (V,E) where E is the set
of edges connecting the set of vertices V . Each agent ai
is assigned a unique start vertex (si ∈ V ) and a unique
destination/goal vertex (di ∈ V ). We call the set of all start
vertices as S and the set of all destination vertices as D. We
assume time to be discretized into uniform steps. At every
time step, each agent executes one of the two options: i)
move to one of its adjacent vertices in the graph, or ii) wait
at its current vertex. The set of actions that all agents perform
at a time step tj is referred to as a joint set Jtj . A joint set of
actions is considered valid if no two agents occupy the same
vertex at any time step: ai,tj ̸= ak,tj , and if no two agents
swap vertices in a single time step (ai,tj+1

= ak,tj ⇐⇒
ak,tj+1

̸= ai,tj ), where ai,tj denotes the position of agent
ai at time tj Our objective is to determine a series of valid
joint sets that guide agents from their source vertices S to
their goal vertices D in the least amount of time steps.

B. Environment Setup

Remaining consistent with the standard MAPF problem,
we use the following setup: the map is a 2D discrete 4-
connectivity grid world, and agents can move to the free
cell adjacent to their location or stay idle at each time step.
An episode terminates when all agents are on their goals
at the end of a time step (success) or when the number
of time steps reaches the pre-defined limit (failure). Unlike
previous rigid and simple room environments [5], we also
look at a new room-like map generator that offers greater
flexibility in terms of the number, size, and shape of rooms
in the generated maps. In particular, the new room map
contains corridors of varying widths, which are highly similar
to real offices, warehouses, and other environments. Unlike
the timeliness impact of loose obstacles in random maps,
continuous obstacles in such highly structured maps may
have a significant impact on current decision-making even
across substantial distances.

IV. MAPF AS AN RL PROBLEM

In this section, we elaborate on our approach to processing
static and dynamic information in the global map to enable
agents to learn informed policies from it.

A. Observations

In order for the agent to develop long-horizon planning
capability beyond its FoV, we believe that the agent’s obser-
vations should be composed of ground truth local observa-
tions and fuzzy global observations. For local observations,
we follow our previous work [14] to provide grid-based
local information in four separate channels, giving agents the
potential ability of local obstacle avoidance and coordination.



1) Global Static Observations: The process of obtaining
global static observations can be divided into two phases:
firstly, the extraction of a graph from the global map, and
secondly, augmenting the graph with high-level features to
enhance its expressiveness.

a) Graph extraction: To prevent agents from being
overwhelmed by dense grid-based global information, we
extract a concise graph representation from the map. We
process the maps in three steps: skeletonization, neighbor-
hood analysis, and edge generation. The skeletonization of
the map is inspired by binary image thinning in machine
vision for feature extraction and topological representation.
We tried the Zhang-Suen algorithm and the Medial Axis
Transform method. The skeleton generated by the former
has fewer branches. More branches mean more information,
but also more computation. We then perform neighborhood
analysis on the resulting skeleton to identify nodes capable
of representing the map structure. Concretely, we select all
branch pixels (connected to at least three other pixels) and
leaf pixels (connected to at most one other pixel) of the
thinning map to construct our set of nodes. Finally, we
obtain the edges based on the skeleton and the nodes, which
use CV methods or the A* algorithm. We employed the
8-connectivity A* algorithm to identify edges between two
nodes in the skeleton by checking the presence of other nodes
along their connecting paths.

After graph extraction, we obtain a two-dimensional graph
representation of the map with N nodes at time step t,
represented by a 2D coordinate set:

V2
t = {v21,t, v22,t, · · · , v2N−2,t, v

2
N−1,t, v

2
N,t}

∀v2i,t = (xi,t, yi,t),
(1)

which can only characterize some important free cells in the
map. In addition to these map-generated nodes, we also add
two extra nodes into the graph to represent the agent’s current
position v2N+1,t and goal position v2N+2,t.

b) Augmented Static Graph: Recognizing the limita-
tions of 2D coordinates in capturing obstacle structures, we
augment each node with high-level features to enhance the
graph’s ability to represent global structure. Our intuition
is that a node’s value to a single agent pathfinding can
be reflected in three aspects: i) The amount of detour (if
any) an agent requires to reach a specific node (owing
to obstacles) in comparison to the Manhattan distance; ii)
similarly, the amount of detour required to reach the goal
from the specified node; iii) the amount of deviation from
the optimal path when detoured through this specific node.
For this purpose, on top of the coordinates of the nodes,
we set three additional features: node accessibility, detour-
to-goal, and off-route degree.

• Node accessibility, denoting the difficulty for the agent
to get from its current position to the node, is defined
as follows for node i:

dnai,t = A∗
len(v

2
N+1,t, v

2
i,t)−Mdis(v

2
N+1,t, v

2
i,t) (2)

• Detour-to-goal is used to evaluate the difficulty of

reaching the agent’s goal from the node i:

ddgi,t = A∗
len(v

2
N+2,t, v

2
i,t)−Mdis(v

2
N+2,t, v

2
i,t) (3)

• Off-route degree quantifies the extent of the node’s
deviation from the agent’s potentially optimal path to
its goal.

dodi,t = A∗
len(v

2
N+1,t, v

2
i,t) +A∗

len(v
2
N+2,t, v

2
i,t)

−A∗
len(v

2
N+1,t, v

2
N+2,t)

(4)

where A∗
len(·, ·) is the length of a path generated by the

A* algorithm between two coordinates, and Mdis(·, ·) the
Manhattan distance between two coordinates. Ultimately, we
obtain an augmented static graph with high-level features V5

t :

V5
t = {v51,t, v52,t, · · · , v5N,t} with

v5i,t = (xi,t, yi,t, d
na
i,t , d

dg
i,t, d

op
i,t), i = 1, · · · , N (5)

where (xt, yt) is the relative coordinates of the node in the
map at time t, and the number of vectors in the set depends
on the number of nodes in the augmented graph. We believe
that, by focusing on these 5-dimensional nodes, the agent
can learn to identify valuable areas in the map and develop
long-horizon planning capability in single-agent scenarios. In
doing so, the additional advantage of such representation is
that the agent is not required to consider any specific nodes
as mandatory waypoints, thus enhancing planning flexibility.
A more flexible policy could enhance the prospects of agent
cooperation, as it might prioritize team coordination over its
own optimal policy.

2) Global Dynamic Observations: After obtaining the
augmented graph used to characterize the map structure, the
next step is to acquire the intentions of other agents to facil-
itate higher-level coordination. As mentioned earlier, given
that the dynamic uncertainty in the environment derives from
the movements of other agents, we interpret the intentions
of other agents as their (short-term) individual-A* paths to
goal. To this end, we construct a second global graph whose
nodes consist of agents in the map, whose features are used
to represent the corresponding agent’s intention. Specifically,
the features of each node consist of three components: 1)
the current positions of that agent, 2) its predicted future
positions, and 3) its direction of travel.

The current position of agent i is denoted by
(xi

curr, y
i
curr). For the predicted future positions of other

agents, we fit a 2D Gaussian distribution with the means and
variances of the short-term A* predicted paths, indicating the
areas where other agents are likely to appear. Specifically,
at time t, we compute the trajectories of each agent for
the next f steps using A*, denoted as trit,f (p

i
1, p

i
2, · · · , pif ).

Then, we calculate the mean and variance of all points in
the trajectory trit,f along the x-axis and y-axis, respectively.
These means (µi

f,x,t, µ
i
f,y,t) and variances (σi

f,x,t, σ
i
f,y,t) are

used to represent the likelihood of potential positions that the
agent may occupy within the next f steps. Finally, we assign
each agent a vector (dxi

f,t, dy
i
f,t,magif,t) pointing towards

its predicted position after f steps, where (dxi
f,t, dy

i
f,t) is its

unit direction vector and magif,t is its the magnitude. The



Fig. 2. ALPHA’s attention-based neural network. Note that for global observation, the static features and dynamic features are passed into different
encoders through different channels, and then the output features are concatenated together to form the final features of the global observation. Feature
embedding: During the embedding process of nodes in the map, where the static features of any node ∀v5i,t ∈ V5

t need to be transformed into d-dimensional
embedding vectors through a linear layer; similarly, the 9-dimensional dynamic features of all agents ∀aif,t ∈ Df,t also need to undergo a linear layer
transformation to obtain d-dimensional representations. N and Na represent the number of nodes and the number of agents in the map, respectively.

TABLE I
REWARD STRUCTURE

Action Reward

Move to cardinal directions -0.3

Stay idle (not on goal) -0.3

Stay idle (on goal) 0.0

Collision with others/obstacle -2.0

Blocking other agents -1.0 × η

global dynamic graph used to describe the agents’ intention
consists of a 9-dimensional vector set Df,t:

Df,t ={a1f,t, a2f,t, · · · , a
Na

f,t }
aif,t =(xi

curr, y
i
curr, µ

i
f,x,t, σ

i
f,x,t, µ

i
f,y,t, σ

i
f,y,t,

dxi
f,t, dy

i
f,t,magif,t) i = 1, 2, · · · , Na (6)

where Na is the number of agents. It is crucial to em-
phasize that due to the inherent uncertainty of learning-
based agents, anticipating their strict adherence to A* paths
and formulating policies based on A*-informed long-term
predictions can have adverse effects on the performance of
the MAPF planner. But in the short term, A* paths can
provide valuable insights into the agent’s immediate actions,
particularly in highly structured scenarios involving narrow
doors and corridors.

B. Action Space and Reward
The agent’s action space contains five elements, namely

four cardinal directions (up, down, left, right) and stay idle.
Our reward structure is shown in Table I. If the ego agent
blocks other agents, it incurs a penalty of blocking penalty×
η, where η represents the number of blocked agents [14].

V. ATTENTION-BASED NEURAL NETWORK

For local observations derived from precise grid states,
we employ convolutional layers and pooling layers (inspired
by VGGnet [20]) to condense the information; meanwhile,
for global observations structured as graphs, we utilize
encoders based on the graph transformer [21] to integrate
the information. The most interesting part of this network
architecture is its novel encoder, utilized to infer the inter-
dependencies among nodes in both the static and dynamic
augmented graphs generated from global observations. These
inter-dependencies are commonly referred to as context [22].
Through context learning, the agent infers which of the
global context-aware nodes is more important to its decision-
making and constructs its policy based on this. Next, all
features from different channels are concatenated and then
passed through a residual block, consisting of two linear
layers and a residual shortcut [23], and fed into a long-short-
term memory (LSTM) cell. Finally, the agent can obtain the
policy, value, and blocking through three linear layers.

1) Attention-focusing Layer: Our motivation for design-
ing the attention-focusing layer is to enable the agent to
discern the varying importance of different regions on a map,
which can improve the agent’s policy. In this layer, the agent
infers the dependencies between itself and all other nodes,
further augmenting the extent of this discrimination.

Specifically, the agent computes correlations with all other
nodes in both the static and dynamic graphs, assigns atten-
tion weights, and subsequently applies them to the feature
vectors. As an illustration, using the augmented static graph,
at time step t, all input 5-dimensional feature vectors v5i,t



are transformed into d-dimensional embedding vectors ui

via a linear layer. The ego agent embedding vector uN+1 is
extracted to calculate the query vector qa through the weight
matrix WQ

fa. Similarly, the key vector ki is calculated by
passing all embedding vectors through the weight matrix
WK

fa, allowing us to compute the ego agent’s attention for
all nodes using the following formulas:

qa = WQ
fauN+1, ki = WK

faui, sa,i =
qa · kTi√

d
,

αa,i =
esa,i∑N+2

i=1 esa,i

, i = 1 · · ·N + 2 (7)

where W fa
Q ,W fa

K ∈ Rd×d consist of learnable parameters
of the neural network. The obtained attention αa,i is used to
represent the agent’s dependency for node i. We use attention
for strengthening the embedding vectors ui of interest and
for weakening the embedding vectors that are not of interest:

u′
i = αa,iui, i = 1 · · ·N + 2 (8)

By stacking several attention-focusing layers (nf in Fig. 2),
the agent’s interest in different nodes can be significantly
different. Agents will focus their attention on those regions
that are already potentially of interest rather than viewing all
nodes equally. Our encoder uses a self-attention layer [24],
[25] after the attention focusing layer to reason about the
inter-dependencies of nodes in the augmented graphs and
perform context learning.

Our supplementary material details the computation of
self-attention layers, training specifics, hardware setups, loss
functions (RL and IL), and hyper-parameter selections12.

VI. EXPERIMENTS

In this section, we extensively test ALPHA through simu-
lation experiments, compare its performance with state-of-
the-art baselines, and conduct ablation studies to validate
each proposed technique. Additionally, we validate ALPHA
by deploying a trained model in various simulation environ-
ments (Gazebo) and real-world scenarios.

A. Comparison and Analysis

During training, we randomly select the size of structured
environments from a uniform distribution ranging from 10 to
40, while maintaining a consistent configuration of 8 agents.
While testing, we chose environments of sizes 20, 40, and
60, deploying 4 to 128 agents.

We compare our method with five other state-of-the-art
MAPF solutions, namely our previous work PRIMAL [14],
MAPPER [16] with global guidance, G2RL [17] with relaxed
global guidance, graph neural network-based communication
method DHC [18], and transformer-based communication
method SCRIMP [19]. We also present results of the search-
based bounded-optimal centralized planner ODrM* [6] (with
inflation factor ϵ = 2.0). For each test, we generated a
fixed set of 100 randomly-generated environments to evaluate

1https://github.com/marmotlab/ALPHA
2https://arxiv.org/abs/2310.08350

these MAPF planners. In other words, all planners were
tested on exactly the same set of environments, and the test
results are presented in Table II. We evaluate performance
using three metrics: Makespan (MS) for solution efficiency
via action counts, Success Rate (SR) for task completion,
and Arrival Rate (AR) to gauge the percentage of goal-
reaching agents, ensuring fair assessment of nearly com-
pleted episodes and avoiding their classification as complete
failures.

Compared to ODrM*, all learning-based planners exhibit
significant advantages in terms of AR, which is crucial for
life-long MAPF. ALPHA consistently outperforms PRIMAL
in nearly all cases, likely due to PRIMAL’s sole reliance
on local information. As the agent team size increases, the
effectiveness of rigid global guidance provided by MAP-
PER and G2RL diminishes, leading to a decline in their
performance. Notably, even in our more complex tasks (128
agents, 60× 60 map size, 0.2 obstacle density) demanding
high agent cooperation, which MAPPER and G2RL were
completely unable to solve, ALPHA achieved a 25% SR.
This is likely due to the fact that MAPPER and G2RL,
to some degree, force agents to follow paths/waypoints
computed by A*, and this possibly reduces their effectiveness
in denser environments.

Another notable finding is that DHC and SCRIMP poli-
cies, at times, lead to certain agents getting stuck in corners
because of the other agents. We believe that the same
heuristic map used by DHC and SCRIMP causes this issue.
ALPHA, with its comprehensive grasp of the global map and
policy flexibility, does not face this limitation. Additionally,
SCRIMP employs a tie-breaking strategy to enhance coor-
dination, which is particularly effective in crowded cases.
However, this also results in SCRIMP needing much more
time to compute a solution. For example, in a MAPF problem
with 64 agents in a map of size 20 × 20, ten episodes of
SCRIMP take 12.29s, while those of ALPHA take only 7.21s
( 41% less time).

While the global information furnished by ALPHA offers
enhanced flexibility, a limitation compared to other global
information methods is the necessity to compute the static
augmented graph at each step. Generating an augmented
graph for a 40×40 grid map requires approximately 0.35ms.
For ALPHA, the time needed to solve a MAPF task linearly
correlates with this graph generation process.

B. Ablation Study

Our architecture is based upon two important ideas: global
information and attention focusing, where global information
includes static features for encoding the environment’s struc-
ture and dynamic features for describing agent’s intention.
To analyze the importance of these three elements, we
experimented with three ablation variants of ALPHA: 1) we
removed the second graph and its encoder, using only static
features for environment structure encoding, 2) incorporating
dynamic features to predict agents’ intentions, and 3) adding
an attention focusing layer to enable the agent to differentiate
the importance of different areas in the map. Furthermore,



TABLE II
EXPERIMENTAL RESULTS. THE NOTATION ”↑” IMPLIES THAT A LARGER VALUE IS PREFERABLE, AND VICE VERSA.

Model MS↓ AR↑ SR↑

20 × 20 room-liked environment with 4, 8, 16, 32, 64, 128 agents

ODrM* 30.58 43.19 97.25 292.93 512.00 512.00 100% 98.00% 88.00% 47.00% 0.00% 0.00% 100% 98% 88% 47% 0% 0%
PRIMAL 201.32 275.93 439.95 506.83 512.00 512.00 93.50% 90.88% 88.63% 81.72% 66.79% 35.74% 79% 67% 30% 2% 0% 0%
MAPPER 79.81 101.05 246.69 427.33 512.00 512.00 98.75% 97.53% 95.75% 89.71% 53.92% 6.96% 97% 97% 82% 41% 0% 0%
G2RL 42.22 65.46 159.12 356.94 511.45 512.00 98.00% 98.75% 98.00% 94.43% 68.50% 18.07% 99% 97% 87% 54% 1% 0%
DHC 45.50 73.86 175.22 354.43 509.69 512.00 99.00% 98.62% 96.56% 90.69% 69.70% 20.09% 98% 93% 77% 45% 1% 0%
SCRIMP 43.42 61.56 186.34 214.32 488.98 – 99.25% 99.37% 98.87% 97.53% 82.32% – 98% 96% 93% 75% 15% –

ALPHA 37.39 52.26 120.65 310.21 503.87 512.00 100% 100% 99.75% 97.69% 70.12% 25.71% 100% 100% 96% 78% 8% 0%

40 × 40 room-like environment with 4, 8, 16, 32, 64, 128 agents

ODrM* 56.73 69.34 91.89 146.88 375.37 512.00 100% 100% 97.00% 85.00% 32.00% 0.00% 100% 100% 97% 85% 32% 0%
PRIMAL 285.55 384.93 463.86 492.82 511.80 512.00 91.00% 87.62% 85.56% 82.69% 73.14% 61.71% 73% 47% 23% 11% 1% 0%
MAPPER 104.82 157.12 218.35 348.95 491.58 512.00 100% 99.37% 98.00% 93.71% 76.60% 51.02% 100% 96% 91% 66% 16% 0%
G2RL 57.60 93.31 166.92 241.39 433.13 512.00 100% 99.75% 99.06% 98.65% 93.53% 70.50% 100% 98% 89% 81% 33% 0%
DHC 104.19 127.78 188.62 263.81 427.02 512.00 97.75% 98.00% 97.88% 95.94% 91.17% 72.53% 92% 91% 80% 65% 28% 0%
SCRIMP 58.53 91.84 116.05 183.54 396.93 484.76 100% 99.62% 99.56% 99.21% 94.10% 85.09% 100% 97% 95% 84% 42% 12%

ALPHA 64.04 88.75 140.96 206.85 392.23 506.48 100% 100% 99.75% 99.34% 93.46% 73.99% 100% 100% 97% 93% 60% 7%

60 × 60 room-liked environment with 4, 8, 16, 32, 64, 128 agents

ODrM* 84.71 98.43 106.46 163.53 228.95 457.17 100% 100% 99.00% 88.00% 72.00% 14.00% 100% 100% 99% 88% 72% 14%
PRIMAL 363.45 465.35 495.85 508.17 512.00 512.00 84.75% 78.37% 79.75% 73.62% 71.51% 62.83% 54% 25% 11% 3% 0% 0%
MAPPER 177.61 241.31 280.69 388.55 490.02 512.00 99.50% 97.75% 98.31% 93.87% 85.96% 62.47% 97% 89% 90% 61% 17% 0%
G2RL 104.40 140.85 168.70 280.04 431.21 512.00 99.00% 98.62% 97.36% 95.62% 93.76% 86.01% 96% 94% 91% 68% 34% 0%
DHC 131.59 203.71 186.66 323.19 406.40 496.70 97.75% 96.75% 98.88% 95.16% 93.30% 87.79% 91% 77% 86% 54% 35% 7%
SCRIMP 106.79 166.37 125.50 211.03 421.65 498.72 99.50% 99.25% 99.61% 98.73% 96.79% 88.08% 98% 95% 97% 81% 31% 8%

ALPHA 110.82 158.59 173.02 263.74 357.17 485.23 99.50% 99.25% 99.75% 99.03% 97.91% 89.16% 98% 97% 97% 86% 67% 25%

TABLE III
ABLATION STUDY

Structural Intent Attention Short-term Total Episode
Encoding Prediction Focusing Intention Reward↑ Length ↓

– – – – -249.760 230.754

✓ – – – -104.412 95.229
✓ ✓ – – -99.567 78.931
✓ ✓ ✓ – -92.320 77.481
✓ ✓ ✓ ✓ -87.878 70.071

Fig. 3. Illustration of the environment and the paths of the three agents.

we attempted a fourth ablation variant of ALPHA by making
shorter-term predictions (10 in practice) of agents’ intentions.

The results of the ablation variants are shown in Table III.
We observe that static features, which contribute to encoding
the environmental structure, lead to significant performance
improvements. Predicting agent intentions greatly enhances
coordination and significantly reduces makespan. This aligns
with our assertion that enabling the agent to understand
global information facilitates better planning. Our attention
focusing mechanism enhances the expressive power of the
network. As mentioned in previous sections, short-term agent
intention prediction outperforms long-term agent prediction,
as it mitigates the inherent inaccuracies in A* prediction.

C. Experimental Validation

To illustrate the ability of ALPHA to be deployed in the
real world, we test it in three standard gazebo simulation

environments provided by AWS robotics3.
Additionally, we conduct real-world experiments using

three mecanum-wheeled robots (0.2m × 0.23m) in an en-
vironment measuring 3.25m × 3.25m containing two long,
wall-like obstacles arranged to create a room with a single
entrance (see Fig. 3). The agents follow policies generated
by our trained ALPHA model and successfully reach their
goals without collision. For more simulation and real-world
experiment details, refer to the additional video.

VII. CONCLUSION

In this paper, we propose ALPHA, a novel MAPF planner
designed to encode and utilize more comprehensive global
information for long-horizon planning, to go beyond the use
of limited FoVs in most existing learning-based MAPF plan-
ners. Our proposed augmented graph-based global observa-
tions capture both obstacle structure and agent intentions, fa-
cilitating better representation learning through these abstrac-
tions. We further utilize an attention-focusing mechanism
to enhance map understanding and context learning, aiding
agents in recognizing different regions’ importance. Through
a comprehensive range of experiments conducted on highly
structured maps of varying team and world sizes, ALPHA
consistently demonstrates superior performance compared
to state-of-the-art learning-based MAPF baselines and a
bounded-optimal search-based planner across the majority of
scenarios. In doing so, we aim to offer a fresh perspective to
the MAPF research community by highlighting that utilizing
more effective methods for encoding a broader spectrum of
global information can yield performance surpassing com-
munication learning.
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