
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Conditional Neural Heuristic for Multi-objective
Vehicle Routing Problems

Mingfeng Fan, Yaoxin Wu, Zhiguang Cao, Wen Song, Guillaume Sartoretti, Huan Liu, and Guohua Wu*

Abstract—Existing neural heuristics for multi-objective vehi-
cle routing problems (MOVRPs) are primarily conditioned on
instance context, which failed to appropriately exploit preference
and problem size, thus holding back the performance. To thor-
oughly unleash the potential, we propose a novel conditional
neural heuristic (CNH) that fully leverages the instance context,
preference, and size with an encoder-decoder structured policy
network. Particularly, in our CNH, we design a dual-attention-
based encoder to relate preferences and instance contexts, so as
to better capture their joint effect on approximating the exact
Pareto front (PF). We also design a size-aware decoder based
on the sinusoidal encoding to explicitly incorporate the problem
size into the embedding, so that a single trained model could
better solve instances of various scales. Besides, we customize
the REINFORCE algorithm to train the neural heuristic by
leveraging stochastic preferences, which further enhances the
training performance. Extensive experimental results on random
and benchmark instances reveal that our CNH could achieve fa-
vorable approximation to the whole PF with higher hypervolume
(HV) and lower optimality gap (Gap) than those of existing neural
and conventional heuristics. More importantly, a single trained
model of our CNH can outperform other neural heuristics that
are exclusively trained on each size. Additionally, the effectiveness
of the key designs is also verified through ablation studies.

Index Terms—Encoder-decoder, Neural heuristic, Multi-
objective optimization, Vehicle routing problems.

I. INTRODUCTION

EXTENDING single-objective vehicle routing problems
(SOVRPs) to encompass multiple conflicting criteria,

multi-objective vehicle routing problems (MOVRPs) have gar-
nered significant research interest in operations research and
computer science, owing to their role in optimizing logistical
and operational decision-making. These problems encapsulate
a range of practical requirements in route optimization [1],
balancing multiple goals such as cost efficiency, time man-
agement, and customer satisfaction, while also integrating con-
siderations of environmental sustainability. Typical SOVRPs,
such as the traveling salesman problem (TSP) and capacitated

Mingfeng Fan, Huan Liu and Guohua Wu are with School of Traffic
and Transportation Engineering, Central South University, China (E-mails:
mingfan@csu.edu.cn, liuhuan1095@csu.edu.cn, guohuawu@csu.edu.cn).

Yaoxin Wu is with the Department of Industrial Engineering and Inno-
vation Sciences, Eindhoven University of Technology, Netherlands. (E-mail:
wyxacc@hotmail.com)

Zhiguang Cao is with the School of Computing and Information Sys-
tems, Singapore Management University, Singapore. (E-mail: zhiguang-
cao@outlook.com)

Wen Song is with the Institute of Marine Science and Technology, Shan-
dong University, China. (E-mail: wensong@email.sdu.edu.cn)

Guillaume Sartoretti is with the Department of Mechanical Engi-
neering, National University of Singapore, Singapore (E-mail: guil-
laume.sartoretti@nus.edu.sg).

Corresponding authors: Guohua Wu.

vehicle routing problem (CVRP), are well-known to be NP-
hard. In comparison, MOVRPs are much harder [2], [3], as
they aim to search for all Pareto optimal solutions (i.e. Pareto
set) under different preferences in multiple objectives [4]. Due
to their high computational complexity, various heuristics [4],
[5] have been proposed to efficiently solve MOVRPs and
pursue approximate Pareto optimal solutions. However, con-
ventional heuristics are often specialized for each problem,
lacking the ability to quickly adapt to other problems [6],
[7]. Additionally, these heuristics are mostly hand-crafted and
require massive manual work, thus potentially undermining
their performance.

Recent years have seen a surge of attempts to solve SOVRPs
using deep reinforcement learning (DRL) in a data-driven
manner [8]–[10], most of which leverage encoder-decoder
neural networks to automatically learn heuristics for vehicle
routing problems (VRPs), e.g., TSP and CVRP [11]–[14].
These approaches, termed neural heuristics, can be trained to
extract patterns and efficiently infer solutions on a collection
of VRP instances [15], potentially eschewing laborious hand-
crafted designs for each problem. Although extensive neural
heuristics for SOVRPs have been investigated [16], there
are only a few for MOVRPs. Typically, they decompose an
MOVRP into a series of SOVRPs with different preferences,
and design learning-based schemes to train deep model(s) for
solving each resulting SOVRP [17]–[19].

Despite the recent advancements and success, existing neu-
ral heuristics for MOVRPs are still less effective. On the one
hand, they process the preference (i.e. the relative importance
or weights assigned to different objectives) independently of
the instance context (i.e. the instance information including
node locations, customer demands, and the vehicle capability).
However, for each instance, a desirable Pareto front (PF)
should be the one that is derived by jointly leveraging both the
preference and the instance context, especially given that the
same set of preferences could lead to different PFs for different
instances. Hence, the instance-preference interaction in a more
informative manner is vital to capture the exact PFs. On the
other hand, they often struggle with training efficiency across
multiple problem sizes and underestimate the effect of problem
size in aid of learning more accurate objective landscapes of
SOVRPs under each preference, thereby delivering inferior
PFs of the MOVRP. Therefore, it is considerably rewarding to
further ameliorate the performance by explicitly incorporating
the size, so that a single unified model could be within reach
and also outperform the ones trained for each size.

To address the above issues, in this paper, we propose
a novel Conditional Neural Heuristic (CNH) for MOVRPs.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2

Our CNH decomposes an MOVRP into a series of SOVRPs
using a set of preferences and solves them in parallel with an
encoder-decoder structured neural network to approximate the
PF. In particular, the proposed encoder-decoder architecture is
conditioned on the instance context, preference, and problem
size, which collaboratively affect the PF and thus facilitate
learning more informative policies for solving MOVRPs. In
the encoder, we introduce a dual-attention to effectively relate
the instance context and preference, which exploits a self-
attention to promote representations of VRP nodes and the
preference node under a specific SOVRP, as well as a cross-
attention to emphasize the difference between the two het-
erogeneous nodes. In the decoder, we introduce a sinusoidal
encoding to explicitly yield the problem size embeddings so
as to allow the neural heuristic to be more generalizable for
the route construction of different scales. With the instance
context and preference processed by the encoder for better
representation, the decoder iteratively selects a VRP node at
each time step until a complete solution for a specific SOVRP
is constructed. Moreover, we train our CNH on MOVRP
instances of varying sizes using reinforcement learning in
conjunction with stochastic preferences to boost performance.
We evaluate our CNH on randomly generated instances of TSP
with two and three objectives and CVRP with two objectives,
as well as benchmark instances, and the results show that
it achieves better PFs than those of conventional and neural
baselines for all problem sizes either seen or unseen during
training.

The remainder of this paper is organized as follows: Section
II reviews related works; Section III presents the formulation
of MOVRPs and different decomposition strategies; Section
IV details the proposed method and policy network; Section
V exhibits and analyzes our experimental results; Section VI
identifies limitations of our method; Section VII concludes this
paper.

II. RELATED WORKS

A. Conventional Methods for MOVRPs

The classic methods for MOVRPs are mainly divided into
two branches, i.e., exact algorithms and heuristics. The former
ones aim to generate all exact Pareto optimal solutions, which
inevitably suffer the exponentially growing complexity and
thus the unbearable computational cost, especially for large-
sized problems [20]. Consequently, the latter ones are often
used in practice [21]–[23], since the heuristics are able to attain
approximate PFs in a reasonable time, with the compromise
on exactness. During the last two decades, multi-objective
evolutionary algorithms (MOEAs), including the dominance-
based and decomposition-based ones, have been recognized as
the mainstream conventional methods [24]–[26] and proved
superior in tackling MOVRPs [27]. In a typical MOEA, a
working population of a predetermined size is evolved using
reproduction, mutation, and selection operators. The selection
operator is usually designed based on Pareto dominance, ag-
gregation (i.e. combining the multiple objectives into a single
scalar objective function based on a decomposition strategy),
or some other performance indicators. Then, MOEAs may

use another population, referred to as the archive, to store
nondominated solutions generated during the evolutionary
process [28]. Although many MOEA variants have been pro-
posed [29]–[31], they are still lacking in that they always need
numerous iterations for solving large-scale problems with low
computational efficiency. Moreover, most of them are hand-
crafted for specific problems with much manual effort, which
may hold back the performance.

B. Neural Heuristics for MOVRPs

Motivated by the recent success in learning data-driven
heuristics for SOVRPs (e.g. the attention model (AM) [11]
and policy optimization with multiple optima (POMO) [32]),
growing attention has been paid to explore neural heuristics
for solving MOVRPs. Li et al. [18] and Wu et al. [19]
decompose an MOVRP into multiple scalarized subproblems
(i.e. SOVRPs), and train separate models for each subprob-
lem with deep reinforcement learning (DRL) and parameter
transfer between models. Instead of DRL, Shao et al. [33]
and Zhang et al. [34] employ evolutionary algorithms to
update or fine-tune parameters in neural networks for solving
each SOVRP and pursuing non-dominant solutions. Zhang et
al. [2] propose a meta-learning-based DRL method, which
evolves the meta-model to a number of sub-models via the
fine-tuning process. All the above neural heuristics rely on
multiple deep models to solve MOVRPs, which are likely
to incur prohibitive training overhead. In contrast, Lin et
al. [17] propose a single decomposition-based model with
DRL to solve MOVRPs, where they use hypernetwork to
process the preferences in a decoder so as to intervene the
parameter training and route construction for each SOVRP.
Termed PMOCO, this method is recognized as the state-of-the-
art neural heuristic for MOVRPs. Although the performance
is favorable against conventional heuristics, PMOCO is still
suffering from two drawbacks: 1) PMOCO mainly processes
the preferences in the decoder, which is independent of the
instance context, thus less effective in approximating the exact
PF; 2) PMOCO trains a deep model for each problem size,
which is less practical while ignoring the effect of size in
yielding high-quality solutions. Different from PMOCO, in
this paper, we propose a novel neural heuristic conditioned
on the instance context, preference and problem size, which
exceeds other heuristics with only a single trained model.

III. PRELIMINARIES

A. Problem Statement

A VRP (or SOVRP) instance can be defined on a graph with
nodes V = {0,1,2, · · · ,n}, where a node i∈V is featured by oi.
The solution to a VRP instance is a tour π = (π1,π2, · · · ,πT),
i.e., a node sequence of length T , with π j ∈V . A solution
π is feasible only if it meets the constraints for the VRP.
Accordingly, a VRP with m objectives (i.e. MOVRP) is
formally defined as

min
π∈X

F(π) = (f1(π), f2(π), · · · , fm(π)), (1)

where X comprises all feasible solutions to the MOVRP, and
F(π) is a m-dimensional vector containing m objective values

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 3

Dual-attention-based Encoder(×𝐿)

𝜆

Preference

𝑜! 𝑜" 𝑜# ··· 𝑜$
Node features

Linear Projection Linear Projection

ℎ$%"&'" ℎ!&'" ℎ"&'" ℎ#&'" ··· ℎ$&'"

Multi-head Dual-Attention

Skip Connection & Instance Normalization

GELU Activated Feed Forward

Skip Connection & Instance Normalization

ℎ$%"&'" ℎ!&'" ℎ"&'" ℎ#&'" ··· ℎ$&'" ℎ$%"&'" ℎ!&'" ℎ"&'" ℎ#&'" ··· ℎ$&'"

Linear Linear Linear

Concatenate & Linear Projection

Linear Linear Linear

Multi-head Dual-Attention

⊕

ℎ$%"& ℎ!& ℎ"& ℎ#& ··· ℎ$&

ℎ$%"(ℎ!(ℎ"(ℎ#(··· ℎ$(⊕ ℎ!(′ ℎ"(′ ℎ#(′ ··· ℎ$(′

𝜅

Problem size

Linear Projection

Linear Projection

ℎ)

Size-injected node embeddings

PSEs

Multi-head Attention

Single-head Attention

𝑝! 𝑝" 𝑝# ··· 𝑝$
Probability over nodes

Mask & Softmax

LinearLinear

ℎ*!"#
(ℎ*#

(

𝑞+,-

⊕

Linear

Linear

𝑣.,-𝑘.,-

Size-aware DecoderPSE Layer

Matmul Matmul

Advanced PSE

Matmul Matmul

Scale ScaleSoftmax

Fig. 1. An illustration of our policy network for a specific SOVRP instance with n+ 1 nodes and a preference vector λ . For the given SOVRP instance,
the features of nodes along with the preference vector are first processed through a dual-attention-based encoder, in which the node embeddings {hl−1

i }n
i=0

and the preference embedding hl−1
n+1 are interacted by the multi-head dual-attention module. After the node embeddings {hL

i }n
i=0 are derived from the encoder,

the problem size κ (κ = n+ 1) is fed into the problem size embedding (PSE) layer to produce an advanced problem size embedding (PSE), which is then
combined with {hL

i }n
i=0 to create the size-injected node embeddings {hL′

i }n
i=0. The size-aware decoder, starting with an empty sequence, iteratively selects a

node at each step to form a complete solution. In each time step, it utilizes both the node embeddings and the size-injected node embeddings to generate a
probability vector over the nodes with masked softmax, from which it selects the next node to visit. This process continues until a full solution sequence is
constructed.

of the solution π . In the cases of conflicting objectives, there
is no single solution achieving optimality for every objective.
Instead, Pareto optimal solutions are often pursued to capture
or reflect various trade-offs under different preferences over
the objectives.
Definition 1 (Pareto Dominance). A solution π ∈X dom-
inates another solution π ′ ∈X (i.e. π ≺ π ′), if and only if
fi(π)≤ fi(π

′),∀i ∈ {1, · · · ,m} and F(π) ̸= F(π ′).
Definition 2 (Pareto Optimality). A solution π∗ ∈ X is
Pareto optimal if it is not dominated by any other solution.
The Pareto set is defined as all Pareto optimal solutions, i.e.,
P = {π∗ ∈X |∄ π ′ ∈X : π ′ ≺ π∗}. Accordingly, the Pareto
front (PF) is defined as images of Pareto optimal solutions in
the objective space, i.e., F = {F(π)|π ∈P}.

Since SOVRPs (e.g. TSP and CVRP) are already NP-
hard, MOVRPs are more intractable to attain Pareto optimal
solutions, the quantity of which often exponentially expands
along with the problem size (i.e. the number of nodes).
Here we elaborate the problem definitions for two typical
MOVRP variants studied in this paper, i.e., multi-objective
TSP (MOTSP) and multi-objective CVRP (MOCVRP).
MOTSP. An MOTSP instance is gauged by multiple cost
matrices (objectives), with the aim of finding a group of tours,
i.e., node sequences, which are Pareto optimal. For example,
if an m-objective TSP instance s with n+1 nodes is measured
by cost matrices Ci = (ci

jk), with i ∈ {1, · · · ,m} and j,k ∈
{0, · · · ,n}, then the ith objective is defined as

fi(π) = ci
πn+1π1

+
n

∑
j=1

ci
π jπ j+1

, (2)

where π = (π1,π2, · · · ,πn+1) with π j ∈{0,1, · · · ,n} and each
node is accessed exactly once. We consider the Euclidean

MOTSP following [17], [18], [20]. Each node j has a 2m-
dimensional feature vector [o1

j ,o
2
j , · · · ,om

j], where oi
j ∈ R2 is

the coordinate under the i-th objective. Thus, the objective
fi(π) can also be expressed as fi(π) = ∥oi

πn+1
− oi

π1
∥2 +

∑
n
j=1 ∥oi

π j
−oi

π j+1
∥2. In this paper, we consider MOTSP with

both two and three objectives.
MOCVRP. An MOCVRP instance consists of n customer
nodes with coordinates loci (i ∈ {1, · · · ,n}) and demands
δi (δ0 >0), and a depot node with loc0 and δ0 (δ0=0). A
vehicle with the capacity Q (Q > δi) serves all customers
in multiple routes (starting and ending at the depot), which
must ensure that 1) each customer is visited exactly once;
2) the total demand of customers in each route should not
exceed the vehicle capacity. Following existing literature on
neural heuristics [17], [35], we consider bi-objective CVRP in
this paper. Particularly, the objectives are to minimize the total
length of all routes and the length of the longest route.

B. Decomposition Strategy

Decomposition is a simple yet efficient strategy for
MOVRPs and has been widely applied in MOEAs [25]. It
scalarizes an MOVRP into subproblems (SOVRPs) under dif-
ferent preferences, which are then solved to pursue the Pareto
optimal solutions. Given a preference denoted as λ ∈Rm with
λi ≥ 0 and ∑

m
i=1 λi = 1, two typical decomposition strategies

including Weighted-sum and Tchebycheff [36] are usually
exploited.
Weighted-sum Decomposition. It minimizes the convex com-
bination of m objectives under each preference as

min
π∈X

gw(π|λ) =
m

∑
i=1

λi fi(π). (3)

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 4

Tchebycheff Decomposition. It minimizes the maximal dis-
tance between objectives and the ideal point as

min
π∈X

gt(π|λ) = max
1≤i≤m

{λi| fi(π)− (z∗i − ε)|} , (4)

where λ is the preference, z∗i is the ideal value for objective
fi(π) and ε is a small positive component. While Weighted-
sum cannot be used for nonconvex PFs, Tchebycheff has no
such limitation. In fact, the optimal solution in Eq. (4) under a
specific (but unknown) preference λ could be a Pareto optimal
solution [37]. Hence, in this paper, we use Tchebycheff
decomposition to scalarize MOVRPs, same as [17].

Typically, after decomposition, conventional heuristics will
solve each SOVRP with hand-crafted local search or evo-
lutionary algorithms to approximate the PF. However, they
often deliver a limited number of or inferior approximate
solutions in practice. Different from them, we propose a
data-driven conditional neural heuristic (CNH) to solve the
resulting SOVRPs in parallel for achieving better approximate
performance with respect to the Pareto front.

IV. METHODOLOGY

A. Overview

The decomposition strategy provides a paradigm to pursue
the Pareto set for an MOVRP, by solving SOVRPs derived
from different preferences. To achieve high-quality approxi-
mate Pareto optimal solutions, we propose a neural heuristic
conditioned on the instance context, preference, and problem
size. Given an MOVRP instance s (or its instance context)
with the problem size κ and a preference λ , our CNH is
designed to learn a stochastic policy pθ for obtaining the
approximate Pareto solution π = (π1,π2, · · · ,πT), where θ

represents the set of learnable parameters within our neural
architecture, including weights and bias in both encoder and
decoder, expressed as,

pθ (π|s,λ ,κ) =
T

∏
t=1

pθ (πt |s,λ ,κ,π1:t−1), (5)

where πt and π1:t−1 represent the selected node and partial
solution at time step t, and T denotes the number of steps to
construct the solution π . To this end, we design an encoder-
decoder neural architecture, where besides the instance context
fed to the encoder as default, we also elegantly incorporate
the preference and problem size to the encoder and decoder,
respectively. Accordingly, on the one hand, we propose a dual
attention in the encoder to embed both the instance context
and preference, and also relate them to identify their joint
effect on the solutions to SOVRPs, thus the eventual PFs. On
the other hand, we design a size-aware decoder that yields
problem size embeddings with the sinusoidal encoding to
intervene the policy learning over a wide range of scales.
The neural architecture of our CNH is illustrated in Fig. 1,
and we customize the REINFORCE algorithm to train it with
different-sized MOVRP instances and stochastic preferences.
The key designs are elaborated as follows.

B. Dual-attention-based Encoder

Given an instance s (or its context) with nodes V =
{0,1,2, · · · ,n} and their features {oi}n

i=0 (e.g. coordinates in
MOTSP), the encoder takes the instance s and a preference
λ as inputs to yield the embeddings which capture their
relationship. In specific, we first transform {oi}n

i=0 and λ into
initial node (instance context) embeddings {h0

i }n
i=0 and pref-

erence embedding h0
λ

using separate linear projections with
the same output dimension dh=128. The vanilla self-attention
layer treats all inputs in a homogeneous fashion [38]. However,
the preference and instance nodes (or context) are obviously of
different types. To discriminate their embeddings, we design a
dual-attention layer that comprises a multi-head dual-attention
(MDA) sublayer and a feed-forward (FF) sublayer. We evolve
the initial embeddings {h0

i }n
i=0 and h0

λ
through this layer L

times, deriving more informative embeddings {hL
i }n

i=0 and hL
λ

.
MDA Sublayer. Given the node embeddings and preference
embedding {hl−1

i }n
i=0 and hl−1

λ
as inputs to l-th dual-attention

layer, we first define hl−1
n+1=hl−1

λ
(for expression simplicity)

and compute the multi-head self-attention scores between the
nodes and preference as follows,

as
i, j,η =

1√
dk

(hl−1
i W Qs

η)(hl−1
j W Ks

η)⊤,

∀i, j ∈ {0, · · · ,n+1}
(6)

where W Qs
η ∈Rdh×dq and W Ks

η ∈Rdh×dk are trainable query and
key matrices for the head η (η ∈ {1, · · · ,H}), with H=8 and
dq=dk=dh/H. The attention scores {as

i, j,η}
n+1
j=0 are normalized

to {ãs
i, j,η}

n+1
j=0 over the index j using the Softmax function,

which are then used to calculate self-attention values {hs
i,η}

n+1
i=0

in every head as follows,

hs
i,η =

n+1

∑
j=0

ãs
i, j,η(h

l−1
j WVs

η),∀i ∈ {0, · · · ,n+1} (7)

where WVs
η ∈Rdh×dk is the trainable value matrix. Then, we

concatenate self-attention values in different heads to obtain
the aggregated node and preference embeddings {hs

i}
n+1
i=0 with

dh dimension, i.e., hs
i =

[
hs

i,1; · · · ;hs
i,H

]
.

The multi-head self-attention views the preference as an
extra (dummy) node and processes it with those genuine nodes
homogeneously. To better discriminate them and capture their
joint effect on the solutions (thus the eventual PF), we further
exploit a multi-head cross-attention to yield another group of
embeddings {hc

i }n
i=0. The corresponding scores are computed

as follows,

ac
i,η =

1√
dk

(hl−1
i W Qc

η)(hl−1
n+1W

Kc
η)⊤, ∀i∈ {0, · · · ,n} (8)

where W Qc
η ∈ Rdh×dq and W Kc

η ∈ Rdh×dk are trainable query
and key matrices for the head η . Then we compute the cross-
attention values {hc

i,η}n
i=0 in each head as follows,

hc
i,η = ac

i,η(h
l−1
n+1WVc

η),∀i ∈ {0, · · · ,n} (9)

where WVc
η ∈Rdh×dk is the trainable value matrix for the head

η . Accordingly, we concatenate the values in different heads

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 5

to attain the aggregated node embeddings {hc
i }n

i=0 out of the
multi-head cross-attention, i.e., hc

i =
[
hc

i,1; · · · ;hc
i,H

]
.

To fuse the node (instance context) embeddings and prefer-
ence embeddings derived from the dual mechanisms, i.e., the
multi-head self-attention and the multi-head cross-attention,
we directly add them as follows,

hl′
i =

{
hs

i +hc
i , ∀i ∈ {0, · · · ,n}

hs
i , i = n+1 (10)

which are then successively processed using linear projection,
skip-connection, and instance normalization (IN) [39], [40],
i.e., hl′

i = IN(hl−1
i + hl′

i Wo), with a trainable matrix Wo. Note
that in the multi-head cross-attention mechanism, we do not
utilize preference embedding to attend to node embeddings, as
our experiments (see Section V-F) have shown that this does
not contribute to the improved performance. Instead, we set
the preference embedding to zeros.
FF Sublayer. The embeddings {hl′

i }
n+1
i=0 from the MDA sub-

layer are taken as inputs to a feed-forward sublayer, which
consists of two linear layers with the GELU activation function
in between [41], such that,

h f
i = GELU(hl′

i W1)W2, ∀i ∈ {0, · · · ,n+1} (11)

where W1 ∈ Rdh×d f and W2 ∈ Rd f×dh are trainable matrices
with d f =512. We process {h f

i }
n+1
i=0 using skip-connection and

IN to obtain the output embeddings {hl
i}

n+1
i=0 from the l-th

dual-attention layer as follows,

hl
i = IN(hl′

i +h f
i), ∀i ∈ {0, · · · ,n+1} (12)

We stack L (L = 6) dual-attention layers in the encoder,
each of which possesses the same structure but with respective
parameters. The embeddings of the (genuine) nodes from the
encoder, i.e., {hL

i }n
i=0, are adopted as inputs to the decoder.

C. Size-aware Decoder

In the decoder, we first feed the number of nodes to the
problem size embeddings (PSE) layer, and evolve the embed-
dings through a multi-head attention (MHA) layer, followed by
a single-head attention (SHA) layer to select nodes for route
construction (as expressed in Eq. (5)).
PSE Layer. We employ the sinusoidal encoding based on sine
and cosine functions to yield the problem size embeddings
(PSEs), which have been proven effective for positional en-
coding of tokens in NLP tasks [38]. In specific, we define the
initial PSEs as follows,

PSE(κ,2i) = sin(κ/100002i/dh),

PSE(κ,2i+1) = cos(κ/100002i/dh),
(13)

where κ and i (i ∈ {0, · · · ,63}) mean the problem size and
dimension, respectively. The resulting 128-dimensional PSEs
are then processed using two linear layers with trainable
matrices Wκ1 ∈Rdh×2dh and Wκ2 ∈R2dh×dh . We inject the size
information by adding the results from PSE to {hL

i }n
i=0 from

the encoder such that,

hL
i
′
= hL

i +hκ , with hκ = (PSE(κ, ·)Wκ1)Wκ2. (14)

The increment of the size-injected node embeddings
{hL

i
′}n

i=0 captures the context of problem size information
and assists our CNH model in pursuing the best-performing
strategy for a size-specific instance. In other words, the in-
jection of problem size in CNH enables the extraction of
more informative node embeddings, which facilitate the neural
network to learn more high-quality PFs.
MHA Layer. At time step t in the solution construction, we
calculate the context embedding based on the first and last
visited node in the current partial solution π1:t−1, as follows,

qc,η = hL
π1

W Q1
η +hL

πt−1
W Qt

η , (15)

where W Q1
η ,W Qt

η ∈ Rdh×dq are trainable matrices. We regard
the context embedding qc,η as a query to attend to all nodes.
To this end, we derive the key and value vectors from size-
injected node embeddings hL

j
′ (rather than hL

j) such that,

k j,η = hL
j
′
W K

η ; v j,η = hL
j
′
WV

η , ∀ j ∈ {0, · · · ,n} (16)

where W K
η ,WV

η ∈ Rdh×dk are trainable parameters. Then, we
compute attention scores as a j,η = qc,η k⊤j,η/

√
dk, and mask

infeasible nodes (by setting a j,η =−∞) which cannot be visited
next (e.g. the already visited nodes for MOTSP). Afterwards,
we normalize {a j,η}n

j=0 to {ã j,η}n
j=0 using Softmax function

and obtain the attention value as uc,η in the head η . We
aggregate these values through a linear layer (with trainable
W3 ∈ Rdk×dh) to update the context embedding, such that,

q̃c =
H

∑
η=1

uc,ηW3, with uc,η =
n

∑
j=0

a j,η v j. (17)

SHA Layer. In the final stage, an SHA layer is employed to
compute the probabilities of selecting each feasible node. In
this layer, we compute the attention scores as below,

a j =C ·Tanh(q̃c(hL
j
′
W4)

⊤/
√

dk),∀ j ∈ {0, · · · ,n} (18)

where W4 ∈ Rdh×dh and Tanh function are used for linear
projection and value clipping with C=10. Again, we mask
infeasible nodes and normalize {a j}n

j=0 using the Softmax
function to obtain the probabilities, based on which the next
node to visit is selected.

During training, the size-aware decoder chooses actions (i.e.
nodes) using a sampling strategy (i.e. sampling actions ac-
cording to the probabilities derived from the decoder). During
testing, the greedy strategy (i.e. choosing the action with the
maximum probability) is used to construct the solution by
the decoder. While the sampling is used during training for
enhancing the RL exploration in solution space, the greedy
decoding is used during testing to economize the time to
reason out the solution.

D. Objective and Optimization

We expect to train the policy pθ of our CNH that solves
the respective SOVRPs to obtain approximate Pareto optimal
solutions, which are conditioned on the instance context,
preference, and problem size. Given an MOVRP instance as

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 6

Algorithm 1 Customized REINFORCE for CNH
Input: Instance distribution SI , preference distribution Sλ ,
problem size distribution Λ, number of training epochs E,
number of training instances per epoch D, batch size B,
number of tours N.
Output: The trained CNH (i.e. pθ).

1: Initialize policy network parameters θ .
2: for e = 1 to E do
3: D = 0,
4: while D < D do
5: B̃ = min(D−D,B),
6: κ ∼ SAMPLEPROBLEMSIZE(Λ),
7: λb ∼ SAMPLEPREFERENCE (Sλ), ∀b∈

{
1,· · · ,B̃

}
,

8: sb ∼ SAMPLEINSTANCE (SI), ∀b ∈
{

1, · · · , B̃
}

,
9: π

j
b∼ SAMPLETOUR(pθ (·|sb,λb,κ)),

∀ j ∈ {1, · · · ,N} , ∀b ∈
{

1, · · · , B̃
}

,
10: Calculate gradient ▽J(θ) according to Eq. (21),
11: θ ← ADAM(θ ,▽J(θ)),
12: D = D+ B̃,
13: end while
14: end for

expressed in Eq. (1), we define the reward for each subproblem
using Tchebycheff decomposition as

R(π|s,λ ,κ) =− max
1≤i≤m

{λi| fi(π)− (z∗i − ε)|} . (19)

With the rewards, we customize REINFORCE [42] to
compute the gradient for maximizing the expected return
J(θ) = Eπ∼pθ ,s∼SI ,λ∼Sλ ,κ∼ΛR(π|s,λ ,κ) such that,

▽J(θ) =Eπ∼pθ ,s∼SI ,λ∼Sλ ,κ∼Λ[(R(π|s,λ ,κ)
− R̃(s,λ ,κ))▽θ log pθ (π|s,λ ,κ)],

(20)

where R̃(s,λ ,κ) is the baseline of expected reward to re-
duce the variance of the sampled gradients. We use Monte
Carlo sampling to approximate J by training the policy with
minibatches of instances and sampling multiple tours for
each SOVRP. In specific, given B instance-preference pairs
{(sb,λb)}B

b=1 with problem size κ and N sampled tours
{π j

b}
N
j=1 for each SOVRP under (sb,λb), we calculate the

approximate gradient as below,

▽J(θ)≃ 1
BN

B

∑
b=1

N

∑
j=1

(R(π j
b |sb,λb,κ)

− R̃(sb,λb,κ))▽θ log pθ (π
j

b |sb,λb,κ),

(21)

where we set R̃(sb,λb,κ) =
1
N ∑

N
j=1 R(π j

b |sb,λb,κ) and force
different starting nodes to sample the N tours for each SOVRP
following [32]. The pseudocode of the optimization procedure
is summarized in Algorithm 1.
Size Sampling. To strengthen the capability of our CNH in
solving different-sized MOVRPs, we train it with instances of
multiple sizes at the same time. In specific, we sample a size
from a predefined set Λ for each minibatch and then generate
training instances of the corresponding size for optimization
as in Eq. (21).

TABLE I
TRAINING TIME ON BI-CVRP.

Neural heuristics Bi-CVRP20 Bi-CVRP50 Bi-CVRP100

DRL-MOA 18.50h 46.12h 65.93h
ML-DAM 428.32h 420.51h 124.18h
PMOCO 7.78h 13.08h 42.38h

CNH 20.31h

Stochastic Preferences. Existing neural heuristics restrict the
sum of values in preferences to 1, i.e., ∑

m
i=1 λi = 1 [17],

[18]. However, it is clear that preferences like [0.1,0.4] and
[0.2,0.8] share the same meaning since these two vectors
would represent the same directions if they are normalized
(so that the sum of the values in each vector should be
equal to 1). Moreover, preference vectors that point in the
same direction will lead the optimization toward the same
region of the Pareto front. Hence we generate more stochastic
preferences during training by randomly sampling each value
in preferences within [0, 1], which are taken as input to
the neural network. When computing the rewards, we still
scale preferences to ensure normalization, i.e., the sum of all
preference values is equal to 1. We may view the stochastic
preferences as a way of enhancing the training data diversity,
since preferences with the same/similar orientations may share
the same/similar solutions and rewards.

V. EXPERIMENTS

A. Setup

Problems&Training. We conduct extensive experiments to
verify the effectiveness of our CNH on bi-objective TSP (Bi-
TSP), tri-objective TSP (Tri-TSP), and bi-objective CVRP (Bi-
CVRP), which are used in most literature of neural heuris-
tics [2], [17], [43]. For the m-objective TSP, each node i is
featured by m 2D-coordinates and the m-th cost from node i to
j is the Euclidean distance between their m-th 2D-coordinates.
For the Bi-CVRP, the conflicting objectives are to minimize
the total tour length and the length of the longest route,
following [5], [35]. We use the same hyperparameters for all
problems and train a single CNH for each problem (rather
than training models for each problem size in existing neural
heuristics). We generate 100,000 instances on the fly in each
epoch, with 2D-coordinates and demands uniformly sampled
from [0,1]2 and the set {1, · · · ,9}, respectively. We set the
batch size to 64, and randomly sample the problem size from
Λ = [20,40,60,80,100], which means the number of graph
nodes and customer nodes in MOTSP and MOCVRP, respec-
tively. We train CNH for 200 epochs with Adam optimizer
and set the learning rate and weight decay to 10−4 and 10−6,
respectively.
Baselines. We compare our CNH with four widely-used
MOEAs and three neural heuristics for MOVRPs, including
1) MOEA/D [25], a classic decomposition-based MOEA
implemented with 4,000 iterations on Pymoo 1; 2) NSGA-
II [24], a typical Pareto dominance-based multi-objective

1https://pymoo.org/

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 7

TABLE II
RESULTS ON MOVRPS WITH DIFFERENT PROBLEM SIZES.

Bi-TSP20 Bi-TSP50 Bi-TSP100
Method HV Gap Time HV Gap Time HV Gap Time

MOEA/D 0.508 0.45% 8.41h 0.552 3.91% 12.81h 0.587 12.80% 19.69h
NSGA-II 0.509 0.19% 3.99h 0.561 2.45% 8.71h 0.579 14.04% 16.36h
NSGA-III 0.508 0.34% 4.25h 0.546 5.05% 9.02 0.563 16.38% 16.91
MOGLS 0.509 0.20% 2.11h 0.522 9.17% 6.60h 0.556 17.34% 17.16h

DRL-MOA 0.434 14.94% 1.75s 0.491 14.53% 3.60s 0.608 9.76% 7.42s
ML-DAM 0.505 1.06% 2.46s 0.555 3.51% 4.57s 0.645 4.17% 8.69s
PMOCO 0.508 0.49% 4.16s 0.567 1.27% 7.46s 0.666 1.01% 22.12s
PMOCO-Aug 0.510 0.00% 1.29m 0.575 0.03% 4.29m 0.673 0.10% 19.06m
CNH 0.508 0.37% 5.13s 0.569 0.97% 8.34s 0.668 0.74% 24.71s
CNH-Aug 0.510 0.02% 1.34m 0.575 0.00% 4.54m 0.673 0.00% 19.73m

Bi-CVRP20 Bi-CVRP50 Bi-CVRP100
Method HV Gap Time HV Gap Time HV Gap Time

MOEA/D 0.226 0.81% 12.32h 0.259 1.99% 21.75h 0.232 7.49% 36.62h
NSGA-II 0.227 0.30% 7.65h 0.260 1.44% 17.34h 0.208 16.93% 34.34h
NSGA-III 0.228 0.00% 8.25 0.260 1.47% 18.36h 0.209 16.52% 35.80h
MOGLS 0.226 0.60% 7.09h 0.254 4.14% 14.52h 0.213 14.78% 45.47h

DRL-MOA 0.180 20.88% 6.42s 0.226 16.27% 10.36s 0.213 14.82% 19.87s
ML-DAM 0.211 7.21% 3.06s 0.223 17.63% 5.76s 0.191 23.64% 10.93s
PMOCO 0.220 3.39% 5.40s 0.259 1.81% 11.08s 0.207 17.17% 27.10s
PMOCO-Aug 0.223 2.11% 17.27s 0.262 0.66% 43.35s 0.218 12.82% 3.03m
CNH 0.223 2.07% 6.87s 0.262 0.57% 10.02s 0.249 0.44% 30.84s
CNH-Aug 0.225 1.28% 17.38s 0.263 0.00% 44.32s 0.250 0.00% 3.25m

Tri-TSP20 Tri-TSP50 Tri-TSP100
Method HV Gap Time HV Gap Time HV Gap Time

MOEA/D 0.203 37.83% 9.98h 0.184 47.44% 14.13h 0.230 48.95% 21.61h
NSGA-II 0.285 13.04% 4.04h 0.169 51.48% 9.04h 0.156 65.41% 16.87h
NSGA-III 0.308 5.95% 4.78h 0.253 27.60% 9.73h 0.258 42.72% 18.18h
MOGLS 0.323 1.44% 4.58h 0.291 16.70% 14.56h 0.323 28.38% 37.96h

DRL-MOA 0.250 23.77% 3.51s 0.235 32.67% 5.51s 0.353 21.76% 9.50s
ML-DAM 0.294 10.24% 3.24s 0.282 19.16% 5.74s 0.337 25.33% 9.45s
PMOCO 0.324 1.13% 4.40s 0.339 2.81% 7.67s 0.441 2.39% 23.03s
PMOCO-Aug 0.327 0.00% 1.28m 0.348 0.37% 4.50m 0.447 0.86% 19.90m
CNH 0.326 0.49% 5.71s 0.345 1.35% 8.91s 0.446 1.11% 23.84s
CNH-Aug 0.327 0.00% 1.38m 0.349 0.00% 4.82m 0.451 0.00% 20.41m

TABLE III
RESULTS ON LARGER-SCALE MOVRPS.

Bi-TSP150 Bi-TSP200
Method HV Gap Time HV Gap Time

MOEA/D 0.584 18.93% 26.43h 0.575 23.12% 34.23h
NSGA-II 0.547 24.08% 22.74h 0.510 31.78% 31.52h
NSGA-III 0.535 25.70% 23.72h 0.502 32.93% 32.08h
MOGLS 0.564 21.75% 48.96h 0.563 24.66% 74.56h

DRL-MOA 0.658 8.68% 17.63s 0.688 8.01% 22.74s
ML-DAM 0.694 3.71% 12.47s 0.722 3.42% 17.98s
PMOCO 0.714 0.93% 1.01m 0.741 0.98% 2.02m
PMOCO-Aug 0.719 0.21% 59.18m 0.745 0.33% 2.05h
CNH 0.716 0.62% 1.02m 0.744 0.55% 2.02m
CNH-Aug 0.720 0.00% 59.44m 0.748 0.00% 2.08h

Bi-CVRP150 Bi-CVRP200
Method HV Gap Time HV Gap Time

MOEA/D 0.229 16.16% 54.97h 0.192 32.86% 68.38h
NSGA-II 0.206 24.44% 51.49h 0.189 33.86% 69.56h
NSGA-III 0.207 24.18% 50.17h 0.190 33.48% 68.57h
MOGLS 0.233 14.71% 74.75h 0.238 16.72% 97.42h

DRL-MOA 0.239 12.60% 33.82s 0.245 14.02% 47.11s
ML-DAM 0.166 39.23% 15.13s 0.209 26.73% 21.54s
PMOCO 0.215 21.17% 1.18m 0.219 23.27% 2.42m
PMOCO-Aug 0.230 15.82% 8.72m 0.236 17.17% 18.20m
CNH 0.272 0.26% 1.23m 0.285 0.18% 2.44m
CNH-Aug 0.273 0.00% 9.01m 0.285 0.00% 18.86m

Tri-TSP150 Tri-TSP200
Method HV Gap Time HV Gap Time

MOEA/D 0.253 49.58% 28.23h 0.266 50.18% 35.44h
NSGA-II 0.136 72.96% 25.44h 0.119 77.68% 33.91h
NSGA-III 0.235 53.13% 25.63h 0.208 61.14% 34.06h
MOGLS 0.329 34.57% 70.27h 0.328 38.68% 109.52h

DRL-MOA 0.410 18.47% 20.83s 0.447 16.38% 25.51s
ML-DAM 0.384 23.51% 13.95s 0.416 22.16% 19.93s
PMOCO 0.495 1.57% 1.05m 0.529 1.10% 2.10m
PMOCO-Aug 0.501 0.36% 1.04h 0.534 0.07% 2.13h
CNH 0.499 0.66% 1.08m 0.532 0.52% 2.11m
CNH-Aug 0.502 0.00% 1.05h 0.535 0.00% 2.15h

genetic algorithm, also implemented with 4,000 iterations
on Pymoo; 3) NSGA-III [44], an extension of NSGA-II
by introducing reference direction, which is implemented
with 4,000 iterations on Pymoo; 4) MOGLS [45], a multi-
objective genetic local search algorithm implemented with
10,000 iterations and 100 local search steps in each iteration 2;
5) DRL-MOA [18], which decomposes an MOVRP into
SOVRPs under different preferences and solves them with
a parameter transfer scheme3; 6) ML-DAM [2], which fine-
tunes a learned meta-model to deliver multiple models for
respective SOVRPs4; 7) PMOCO [17], a preference-based
hypernetwork which achieves state-of-the-art performance in
MOTSP and MOCVRP among the present neural heuristics5.
Regarding MOEAs (i.e. MOEA/D, NSGA-II, NSGA-III, and
MOGLS), we use 2-opt and problem-specific local search for
solving MOTSP and Bi-CVRP, respectively.
Training Efficiency. We train DRL-MOA, ML-DAM, and
PMOCO on problem sizes 20, 50, and 100 for all problem
types. Among them, DRL-MOA and PMOCO are trained
using their original settings. Pertaining to ML-DAM, we set
the number of iterations to 10,000, 5,000, and 1,000 for Bi-

2https://github.com/kevin031060/GeneticLocalSearchTSP
3https://github.com/kevin031060/RL TSP 4static
4https://github.com/zhangzizhen/ML-DAM
5https://github.com/Xi-L/PMOCO

CVRP20, Bi-CVRP50, and Bi-CVRP100, respectively, while
keeping the other training settings the same as in the original
paper. This small change promotes a fair comparison by en-
suring that ML-DAM costs similar training overhead to other
baselines, otherwise its training time could be prohibitively
long due to the meta-learning scheme. We record the training
time of the four neural heuristics (i.e. DRL-MOA, ML-DAM,
PMOCO, and CNH) on Bi-CVRP in TABLE I. Our results
show that DRL-MOA and ML-DAM require significantly
longer training time than CNH for most problem sizes, as they
need to train separate models for each SOVRP. On the other
hand, while PMOCO takes shorter training time than CNH
for Bi-CVRP20 and Bi-CVRP50, the time required increases
drastically as the problem size grows. As a result, CNH is
much more efficiently trained than PMOCO on Bi-CVRP100.
Since CNH is trained only once across all sizes, we conclude
that it requires less training overload than the baselines, which
are trained on each respective problem size.

Instance Augmentation. To further improve the performance
of CNH at the inference stage, we apply the instance augmen-
tation proposed in [32], which is also used in PMOCO [17]. In
this paper, we interpret a VRP instance as a graph and obtain
its augmented views by rotation or flipping transformations,
according to the inherent symmetry. For example, if we flip
nodes within the square [0,1]× [0,1] based on x = 0.5, the

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 8

optimal solution (i.e., the optimal node sequence) to the VRP
instance cannot be changed. With the augmented views, i.e.,
transformed instances, we can solve them in parallel, which
means solving the original instance from its different facets.
This approach aids in the enhancement of model performance
by solving a VRP instance from varied perspectives. Given
a coordinate (x,y) in a VRP, there are eight simple trans-
formations, i.e., (x′,y′) = (x,y);(y,x);(x,1− y);(y,1− x);(1−
x,y);(1− y,x); (1− x,1− y);(1− y,1− x). In our experiment,
we adopt these transformations for each objective, respectively.
Hence, we could have 8 transformations for Bi-CVRP (since
there is only one coordinate for each node), 82=64 transfor-
mations for Bi-TSP and 83=512 transformations for Tri-TSP,
respectively. To ensure reasonable inference time, we only use
64 transformations for solving Tri-TSP in CNH and PMOCO.
For each instance, we arrange it and its transformations into
batches to be tested in parallel. Among all solutions to the
transformed instances (and the original instance), the best
solution (to the original instance) can be easily found by
comparing the objective values of all solutions.
Metrics & Inference. The evaluation is based on three metrics
(averaged/summed over all testing instances for each prob-
lem), including the average hypervolume (HV) [46], average
optimality gap (Gap), and the total runtime (Time). HV is
a commonly used metric to evaluate both the convergence
and diversity of a solution set. We normalize HV values
into [0,1] with respect to the same reference point for all
methods, and the higher HV the better. The Gap is the ratio
of hypervolume difference with respect to the best HV among
all methods. We highlight the best HV and Gap by bold
throughout the paper. We also use ”-Aug” to mark the results
enhanced by instance augmentation. Since DRL-MOA and
ML-DAM possess 101/105 models under 101/105 fixed and
uniformly distributed preferences for bi/tri-objective VRPs, we
use the same 101/105 preferences in other decomposition-
based heuristics (i.e. MOEA/D, PMOCO, and CNH) for a
fair comparison.We implement our CNH and all baselines in
Python and test them on a single RTX 3060 GPU and an AMD
Ryzen 7 5800X CPU. We will make our implementation code
publicly available.

B. Comparison Study

We compare CNH with the baselines on Bi-TSP, Bi-CVRP,
and Tri-TSP with three problem sizes (i.e. 20, 50, and 100)
and generate 100 random test instances for each problem and
size. For each problem, while the neural heuristic baselines
are trained for each size, we train only one CNH model over
the sizes in Λ.

Results are summarized in TABLE II. The reference points
for calculating HV are set as follows: For Bi-TSP20, Bi-
TSP50, and Bi-TSP100, the reference points are (15, 15), (30,
30), and (60, 60), respectively; For Bi-CVRP20, Bi-CVRP50,
and Bi-CVRP100, the reference points are (15, 3), (40, 3),
and (60, 3), respectively; For Tri-TSP20, Tri-TSP50, and Tri-
TSP100, the reference points are (15, 15, 15), (30, 30, 30), and
(60, 60, 60), respectively. We can observe that the performance
of conventional heuristics is good on small-sized problems

with 20 nodes and two objectives, but deteriorates drastically
on problems of larger sizes and with three objectives. Among
the neural heuristics, PMOCO and our CNH perform much
better than DRL-MOA and ML-DAM. Particularly, without
instance augmentation, the original CNH and PMOCO surpass
all baselines on most problems and sizes, except on Bi-TSP20
and Bi-CVRP20. The performance of PMOCO and CNH
can be further boosted by applying instance augmentation.
Notably, compared with the state-of-the-art neural heuristics
PMOCO, our CNH consistently shows better performance on
all problems of size 50 and 100, with or without instance
augmentation. This validates the advantage of our approach,
especially considering that only one CNH model is trained
(in comparison to other neural heuristics that perform training
exclusively on each problem size), and the results on problems
of size 50 are actually obtained by zero-shot generalization
(since 50 /∈ Λ). From a practical view, CNH can make it
more convenient to directly produce high-quality solutions to
different-sized MOVRP instances, which alleviates the need
of retraining.

As for computational efficiency, conventional heuristics cost
much longer runtime than neural heuristics, which increases
drastically with the problem size. The conventional heuristics
rely on iterative search schemes for solving each instance,
requiring numerous iterations to enhance solution quality. In
contrast, the learning-based methods construct solutions to
solve subproblems (i.e. SOVRPs) in parallel, only once. Mean-
while, the end-to-end models are able to efficiently reason out
the solutions with pure computation in the neural network,
and hence they are more efficient than non-learning heuristic
baselines. While CNH and PMOCO share similar runtime,
they are relatively slower than DRL-MOA and ML-DAM
owing to the sampling of multiple tours for each instance,
as stated in Section IV-D. However, DRL-MOA and ML-
DAM require massive training overhead for separate models
of each subproblem and perform relatively poorly among the
neural heuristics. In summary, we conclude that CNH achieves
a good trade-off between solution quality and computational
efficiency.

C. Study on Instance-Preference Interaction

To validate the instance-preference interaction strategy in
our CNH, we develop a similar neural heuristic while exclud-
ing the instance-preference interaction, referred to as CNH w/o
Interaction. The only difference between CNH and CNH w/o
Interaction lies in their encoders. The CNH w/o Interaction
encoder consists of two sub-encoders, one for nodes (instance
context) and the other for preferences. The former embeds
node features using L self-attention layers, while the latter
projects preferences into high-dimensional vectors using a
Multilayer Perceptron (MLP) with two hidden layers, each
with a GELU activation function. The outputs of the sub-
encoders are added together to form the final output by the
encoder. Unlike CNH, the CNH w/o Interaction does not ex-
plicitly involve the interplay between the instance context and
preference since they do not pass messages to each other. We
compared the performance of CNH and CNH w/o Interaction

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 9

Fig. 2. The efficiency of instance-preference interaction in CNH.

on Bi-TSP, Bi-CVRP, and Tri-TSP with problem sizes of 20,
50, and 100 using the same test instances in Section V-B,
and the results are depicted in Fig. 2. Our findings indicate
that CNH consistently outperforms CNH w/o Interaction,
particularly on Bi-TSP and Tri-TSP, where the superiority is
most significant. These results suggest that instance-preference
interaction can effectively enhance the performance of neural
heuristics by extracting expressive representations of accurate
Pareto fronts for MOVRP.

D. Generalization Study

To assess the generalization capability of CNH, we evaluate
its zero-shot performance on 100 random test instances for
each problem with larger sizes, i.e., 150 and 200, which are
unseen during training. We also test neural heuristic baselines
on the same instances using their models that are trained
for problem size 100 (rather than 20 and 50), so as to gain
their best zero-shot performance. All results are gathered in
TABLE III. The reference points for calculating HV are set as
follows: Regarding Bi-TSP150 and Bi-TSP200, the reference
points are (90, 90) and (120, 120), respectively; Regarding
Bi-CVRP150 and Bi-CVRP200, the reference points are (120,
3) and (180, 3), respectively; Regarding Tri-TSP150 and Tri-
TSP200, the reference points are (90, 90, 90) and (120,
120, 120), respectively. As shown, the original CNH outstrips
all baselines for each problem and size. When the instance
augmentation is applied, CNH-Aug further achieves the largest
HV among all methods across all problems and sizes, with the
Gap consistently being 0.00%. Therefore, it is verified that the
proposed CNH possesses a favorable generalization capability
in solving larger MOVRPs.

E. Benchmark Study

To further verify the effectiveness of CNH, we compare
it with the baselines on 11 benchmark instances for
Bi-TSP [47], including 10 instances of Bi-TSP100 (i.e.
kroAB100, kroAC100, kroAD100, kroBC100, kroBD100,
kroCD100, euclAB100, euclCD100, euclEF100, and
clusAB100) and 1 instance of Bi-TSP150 (i.e. kroAB150).
The kroAB100∼kroCD100 and kroAB150 are generated
from kroA100, kroB100, kroC100, kroD100, kroA150 and
kroB150 in TSPLIB, according to [47]. We choose the above

TABLE IV
RESULTS ON BENCHMARK INSTANCES.

kroAB100 kroAC100 kroAD100
Method HV Gap Time HV Gap Time HV Gap Time

Exact PF 0.782 0.00% 58h 0.783 0.00% 30h 0.785 0.00% 21h
MOEA/D 0.703 10.10% 7.72m 0.693 11.57% 7.72m 0.701 10.76 % 7.72m
NSGA-II 0.696 10.98% 6.52m 0.680 13.15% 6.52m 0.692 11.80% 6.52m
NSGA-III 0.681 12.89% 9.17m 0.655 16.37% 9.08m 0.681 13.27% 9.08m
MOGLS 0.684 12.48% 10.50m 0.687 12.24% 10.50m 0.686 12.66% 10.50m

DRL-MOA 0.560 28.34% 3.95s 0.585 25.32% 3.62s 0.586 25.38% 3.63s
ML-DAM 0.739 5.49% 6.52s 0.746 4.81% 6.23s 0.734 6.54% 6.17s
PMOCO 0.761 2.58% 3.82s 0.764 2.48% 3.46s 0.769 2.08% 3.45s
PMOCO-Aug 0.769 1.56% 13.44s 0.772 1.44% 13.02s 0.774 1.43% 13.04s
CNH 0.767 1.91% 0.58s 0.769 1.84% 0.20s 0.771 1.81% 0.20s
CNH-Aug 0.773 1.05% 11.90s 0.775 1.10% 11.48s 0.776 1.11% 11.48s

kroBC100 kroBD100 kroCD100
Method HV Gap Time HV Gap Time HV Gap Time

Exact PF 0.784 0.00% 28h 0.781 0.00% 23h 0.791 0.00% 21h
MOEA/D 0.699 10.77% 7.72m 0.703 9.98% 7.72m 0.704 11.02% 7.72m
NSGA-II 0.707 9.85% 6.52m 0.696 10.88% 6.52m 0.704 11.05% 6.52m
NSGA-III 0.675 13.82% 9.10m 0.667 14.61% 9.08m 0.689 12.89% 9.07m
MOGLS 0.687 12.36% 10.58m 0.689 11.84% 10.40m 0.693 12.42% 10.27m

DRL-MOA 0.612 21.88% 3.60s 0.605 22.61% 3.60s 0.586 25.90% 3.60s
ML-DAM 0.733 6.47% 6.28s 0.742 5.03% 6.28s 0.751 5.07% 6.27s
PMOCO 0.766 2.25% 3.47s 0.764 2.21% 3.42s 0.772 2.45% 3.44s
PMOCO-Aug 0.773 1.33% 13.04s 0.770 1.46% 13.03s 0.781 1.33% 13.03s
CNH 0.771 1.63% 0.20s 0.767 1.86% 0.20s 0.780 1.48% 0.20s
CNH-Aug 0.776 0.96% 11.50s 0.773 1.11% 11.50s 0.784 0.97% 11.50s

euclAB100 euclCD100 euclEF100
Method HV Gap Time HV Gap Time HV Gap Time

Exact PF 0.682 0.00% 16h 0.667 0.00% 34h 0.679 0.00% 23h
MOEA/D 0.591 13.39% 10.88m 0.571 14.47% 10.90m 0.580 14.58% 10.92m
NSGA-II 0.587 13.99% 8.90m 0.560 16.01% 8.97m 0.572 15.80% 8.95m
NSGA-III 0.560 17.99% 6.05m 0.548 17.90% 6.10m 0.562 17.23% 6.07m
MOGLS 0.556 18.46% 15.86m 0.538 19.41% 15.56m 0.552 18.74% 15.68m

DRL-MOA 0.606 11.17% 3.99s 0.589 11.69% 3.65s 0.600 11.68% 3.64s
ML-DAM 0.642 5.96% 6.58s 0.627 6.03% 6.32s 0.641 5.52% 6.22s
PMOCO 0.665 2.55% 3.86s 0.650 2.61% 3.48s 0.664 2.25% 3.61s
PMOCO-Aug 0.672 1.47% 13.48s 0.657 1.56% 13.12s 0.670 1.36% 13.19s
CNH 0.667 2.23% 0.59s 0.652 2.32% 0.21s 0.665 1.99% 0.21s
CNH-Aug 0.672 1.47% 12.16s 0.658 1.42% 11.50s 0.671 1.24% 11.66s

clusAB100 kroAB150 Tri-TSP15
Method HV Gap Time HV Gap Time HV Gap Time

Exact PF 0.780 0.00% 27h 0.728 0.00% days 0.416 0.00% 5h
MOEA/D 0.707 9.30% 10.78m 0.589 19.12% 10.25m 0.343 17.46% 3.30m
NSGA-II 0.689 11.68% 8.98m 0.532 26.95% 9.32m 0.407 2.14% 1.35m
NSGA-III 0.688 11.74% 9.18m 0.536 26.36% 13.35m 0.395 5.05% 1.67m
MOGLS 0.689 11.62% 11.00m 0.549 24.61% 18.03m 0.415 0.06% 1.30m

DRL-MOA 0.710 8.99% 3.96s 0.651 10.49% 5.69s 0.395 5.08% 1.18s
ML-DAM 0.740 5.14% 7.28s 0.685 5.94% 9.71s 0.384 7.70% 1.98s
PMOCO 0.758 2.78% 3.74s 0.708 2.78% 5.67s 0.410 1.30% 1.12s
PMOCO-Aug 0.767 1.63% 14.30s 0.714 1.92% 39.04s 0.412 0.84% 1.47s
CNH 0.764 2.01% 0.58s 0.712 2.14% 0.98s 0.412 0.84% 0.38s
CNH-Aug 0.771 1.21% 12.13s 0.716 1.59% 36.34s 0.412 0.84% 0.85s

instances for benchmarking as they are commonly used in
the previous neural heuristics [2], [17], [18]. The nodes in
euclAB100∼euclEF100 are randomly located from a uniform
distribution while those in clusAB100 are randomly clustered
in a plane. TABLE IV displays the results, highlighting the
best solutions except for the exact ones obtained through
exhaustive search [20]. We also include the number of non-
dominated solutions (|NDS|) for each algorithm in TABLE V,
which reflects the diversity of the solution set when the
HV values are similar. Intuitively, a larger |NDS| could
mean a larger HV only when the solutions of the compared
methods are of similar qualities. A larger |NDS| generally
indicates better algorithm performance when HV values
are close among the methods. According to the results, we
observe that CNH achieves a significantly smaller Gap than
the baselines without instance augmentation. Additionally,

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 10

TABLE V
|NDS| ON BENCHMARK INSTANCES.

Method kroAB100 kroAC100 kroAD100 kroBC100 kroBD100 kroCD100 euclAB100 euclCD100 euclEF100 clusAB100 kroAB150 Tri-TSP15

Exact PF 3332 2458 2351 2752 2657 2044 1812 2268 2530 3036 4701 630
MOEA/D 82 85 80 73 76 66 84 74 75 79 75 18
NSGA-II 100 99 99 100 100 100 100 99 100 99 100 100
NSGA-III 67 58 63 56 54 58 59 62 68 61 46 107
MOGLS 45 37 53 43 42 45 50 61 46 46 68 598

DRL-MOA 17 21 18 17 23 23 40 47 50 38 51 46
ML-DAM 43 41 45 37 38 48 49 49 43 44 58 47
PMOCO 73 69 71 72 69 80 77 77 74 59 79 48
PMOCO-Aug 82 81 81 84 81 82 84 77 81 69 84 41
CNH 68 77 75 71 69 71 73 76 73 64 79 45
CNH-Aug 81 81 81 83 81 75 77 79 75 79 83 44

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

1e5

1e5

Exact PF
CNH-Aug
PMOCO-Aug
DRL-MOA
ML-DAM

(a) kroAB100
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

1e5

1e5

Exact PF
CNH-Aug
PMOCO-Aug
DRL-MOA
ML-DAM

(b) euclAB100
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

1e5

1e5

Exact PF
CNH-Aug
PMOCO-Aug
DRL-MOA
ML-DAM

(c) clusAB100

Fig. 3. Exact/approximated PFs obtained by neural heuristics.

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

1e5

1e5

Exact PF
CNH-Aug
MOGLS
MOEA/D
NSGA-II
NGSA-III

(a) kroAB100
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

1e5

1e5

Exact PF
CNH-Aug
MOGLS
MOEA/D
NSGA-II
NGSA-III

(b) euclAB100
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

1e5

1e5

Exact PF
CNH-Aug
MOGLS
MOEA/D
NSGA-II
NGSA-III

(c) clusAB100

Fig. 4. Exact/approximated PFs obtained by CNH-Aug and conventional heuristics.

CNH-Aug outperforms PMOCO-Aug across all instances
except euclAB100, where they perform equally well. Notably,
CNH-Aug achieves an impressive result of only around
1% Gap to exact PFs. Among neural heuristics, |NDS| of
CNH/CNH-Aug is close to that of PMOCO/PMOCO-Aug but
significantly larger than those of the others (i.e. DRL-MOA
and ML-DAM).

We also report the results on one Tri-TSP benchmark
instance with 15 nodes (Tri-TSP15). Please note that tri-
objective VRP benchmarking is rarely investigated in previous
neural heuristics, and we conduct this relevant and meaningful
comparison to all baselines to further verify the power of
CNH. Concretely, the comparative neural heuristics (i.e. DRL-
MOA, ML-DAM, and PMOCO) are employed to solve the Tri-
TSP15 benchmark instance using models trained on 20-node
instances. Since the CNH training process excludes the 15-

node instances, the comparison is fair. The results presented
in TABLE IV indicate that CNH produces solutions that are
closer to exact PF than the other neural heuristics without
instance augmentation. According to the results in TABLE V,
it is interesting that the |NDS| of CNH is lower than that of
MOGLS, which seems to contradict its advantage on bi-TSP
instances. However, CNH gains a PF with desirable spread and
convergence, so its HV is very close to that of MOGLS and
significantly better than the other approximate baselines. Fur-
thermore, CNH shows advantageous computational efficiency
and can swiftly generate additional solutions in parallel when
provided with more references, which offers more flexibility
to practical decision-making.
Visualization. In Fig. 3, we present the exact PFs and approx-
imate PFs obtained by neural heuristics (i.e. DRL-MOA, ML-
DAM, PMOCO-Aug, and CNH-Aug) on three representative

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 11

0.6 0.7 0.8 0.9 1.0 1.1 1.2
Gap(%)

Bi
-T

SP
10

0
Bi

-T
SP

50

CNH w/o SP
CNH w/o PSE
CNH w/o MDA
CNH

Fig. 5. Ablation study on MDA, PSE, and SP.

TABLE VI
ABLATION STUDY ON ATTENTION MECHANISMS.

MOTSP50 MOTSP100
Method HV Gap Time HV Gap Time

CNH 0.569 0.97% 8.34s 0.668 0.74% 24.71s
CNH with MTA 0.568 1.10% 8.33s 0.667 0.88% 23.00s

instances (kroAB100, euclAB100, and clusAB100) that orig-
inate from different distributions. For the sake of clarity, we
exclude the PFs obtained by CNH and PMOCO, as their results
are similar to those obtained by CNH-Aug and PMOCO-
Aug, respectively. From Fig. 3, we can see that CNH-Aug
attains solutions closer to the exact PFs than PMOCO-Aug on
kroAB100 and clusAB100 while achieving nearly coincident
solutions with PMOCO on euclAB100. In addition, CNH-
Aug visibly outperforms either DRL-MOA or ML-DAM,
further verifying the favorable convergence and diversity of
our method. We also display a comparison of the exact PFs and
approximate PFs obtained by CNH-Aug and four conventional
heuristics (i.e. MOEA/D, NSGA-II, NSGA-III, and MOGLS)
in Fig. 4. The outcomes demonstrate a noticeable margin
between different PFs, with the PFs achieved by CNH-Aug
exhibiting as widespread as that of the exact PFs.

Since the node distributions in the benchmark instances
differ considerably from the uniform distribution in training,
the experimental results also indicate that CNH has a strong
out-of-distribution generalization capability.

F. Ablation Study

Components. To analyze the impact of the important com-
ponents in the proposed method, including multi-head dual-
attention (MDA), problem size embedding (PSE) and stochas-
tic preferences (SP), we perform ablation experiments by
replacing the MDA with the multi-head self-attention and
removing the PSE and SP from CNH separately. We denote
the resulting models as CNH w/o MDA, CNH w/o PSE and
CNH w/o SP. We compare them with the intact CNH on Bi-
TSP50 and Bi-TSP100, and show their Gaps in Fig. 5. We
observe that the performance of CNH significantly degrades
when any of its components are removed, which reveals the
effectiveness of these key designs in the neural architecture or
training algorithm.
Attention Mechanism. To further explore the effectiveness
of our dual-attention mechanism, we conduct an experiment
where we replaced the MDA with a multi-head triple-attention

(MTA) mechanism that includes an additional cross-attention
from preferences to nodes. The resulting model is referred
to as CNH with MTA. The results of CNH and CNH-MTA
on Bi-TSP50 and Bi-TSP100 are reported in TABLE VI.
Interestingly, the performance of CNH with MTA visibly
declines compared to the original CNH. We attribute this
to information redundancy caused by the additional attention
layer.

VI. LIMITATIONS AND FUTURE WORK

We have identified three limitations of our CNH that require
attention and possible solutions for future refinements:

1) Scalable problem size embedding. We adopt the si-
nusoidal positional encoding introduced in the Trans-
former [38] for embedding the problem size in CNH.
However, sinusoidal positional encoding is exploited
primarily for sequences of a fixed length, and thus the
PSE layer will provide identical problem size informa-
tion when processing instances exceeding the maximum
graph size used in our model, potentially affecting the
performance of the CNH. In the future, we aim to
investigate scalable problem size embedding techniques
to better accommodate large-scale instances.

2) Extension to the non-Euclidean MOVRPs. This work
is focused on the Euclidean MOVRPs, where distances
are calculated using the Euclidean metric. However,
some MOVRPs are defined in non-Euclidean spaces,
such as those involving real road networks or varied
terrain. We plan to extend our research to non-Euclidean
MOVRPs in the future.

3) Adaptive preference selection. Following the prior
works, we currently still use uniformly distributed and
predefined preferences to decompose MOVRPs. How-
ever, this approach may not be ideal for MOVRPs with
irregular Pareto fronts, potentially affecting solving per-
formance. In the future, we will specialize in techniques
to efficiently and effectively select preferences for better
approximate performance.

VII. CONCLUSION

This paper proposes a novel conditional neural heuristic
(CNH) to approximate PF for MOVRPs. We propose a dual-
attention-based encoder to well relate preferences and instance
contexts, and a size-aware decoder to construct solutions to
SOVRPs based on problem size. We train the CNH using
a customized REINFORCE algorithm with stochastic pref-
erences. Extensive results show that a single trained CNH
can achieve better performance than other neural heuristics
trained for each problem size. Moreover, CNH surpasses typ-
ical conventional heuristics for MOVRPs, possesses a strong
generalization capability, and keeps a relatively small training
overhead.

REFERENCES

[1] S. Zajac and S. Huber, “Objectives and methods in multi-objective
routing problems: a survey and classification scheme,” European Journal
of Operational Research, vol. 290, no. 1, pp. 1–25, 2021.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 12

[2] Z. Zhang, Z. Wu, H. Zhang, and J. Wang, “Meta-learning-based deep
reinforcement learning for multiobjective optimization problems,” IEEE
Transactions on Neural Networks and Learning Systems, 2022.

[3] M. Ruchte and J. Grabocka, “Scalable pareto front approximation for
deep multi-objective learning,” in 2021 IEEE International Conference
on Data Mining. IEEE, 2021, pp. 1306–1311.

[4] M. Ehrgott, Multicriteria optimization. Springer Science & Business
Media, 2005, vol. 491.

[5] N. Jozefowiez, F. Semet, and E.-G. Talbi, “Multi-objective vehicle
routing problems,” European Journal of Operational Research, vol. 189,
no. 2, pp. 293–309, 2008.

[6] J. Kallestad, R. Hasibi, A. Hemmati, and K. Sörensen, “A general deep
reinforcement learning hyperheuristic framework for solving combinato-
rial optimization problems,” European Journal of Operational Research,
2023.

[7] J. Zhou, Y. Wu, Z. Cao, W. Song, J. Zhang, and Z. Chen, “Learning large
neighborhood search for vehicle routing in airport ground handling,”
IEEE Transactions on Knowledge and Data Engineering, 2023.

[8] S. M. Raza, M. Sajid, and J. Singh, “Vehicle routing problem using
reinforcement learning: Recent advancements,” in Advanced Machine
Intelligence and Signal Processing, 2022, pp. 269–280.

[9] L. Duan, Y. Zhan, H. Hu, Y. Gong, J. Wei, X. Zhang, and Y. Xu,
“Efficiently solving the practical vehicle routing problem: A novel
joint learning approach,” in Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & data mining, 2020,
pp. 3054–3063.

[10] A. I. Garmendia, J. Ceberio, and A. Mendiburu, “Neural improvement
heuristics for graph combinatorial optimization problems,” IEEE Trans-
actions on Neural Networks and Learning Systems, 2023.

[11] W. Kool, H. Van Hoof, and M. Welling, “Attention, learn to solve routing
problems!” in International Conference on Learning Representations,
2018.

[12] X. Chen and Y. Tian, “Learning to perform local rewriting for com-
binatorial optimization,” in Advances in Neural Information Processing
Systems, vol. 32, 2019.

[13] Y. Wu, W. Song, Z. Cao, J. Zhang, and A. Lim, “Learning improvement
heuristics for solving routing problems.” IEEE Transactions on Neural
Networks and Learning Systems, 2021.

[14] Y. Ma, J. Li, Z. Cao, W. Song, L. Zhang, Z. Chen, and J. Tang, “Learning
to iteratively solve routing problems with dual-aspect collaborative
transformer,” in Advances in Neural Information Processing Systems,
vol. 34, 2021.

[15] Y. Bengio, A. Lodi, and A. Prouvost, “Machine learning for combinato-
rial optimization: a methodological tour d’horizon,” European Journal
of Operational Research, vol. 290, no. 2, pp. 405–421, 2021.

[16] N. Mazyavkina, S. Sviridov, S. Ivanov, and E. Burnaev, “Reinforcement
learning for combinatorial optimization: A survey,” Computers & Oper-
ations Research, vol. 134, p. 105400, 2021.

[17] X. Lin, Z. Yang, and Q. Zhang, “Pareto set learning for neural multi-
objective combinatorial optimization,” in International Conference on
Learning Representations, 2022.

[18] K. Li, T. Zhang, and R. Wang, “Deep reinforcement learning for
multiobjective optimization,” IEEE Transactions on Cybernetics, vol. 51,
no. 6, pp. 3103–3114, 2020.

[19] H. Wu, J. Wang, and Z. Zhang, “MODRL/D-AM: Multiobjective deep
reinforcement learning algorithm using decomposition and attention
model for multiobjective optimization,” in International Symposium on
Intelligence Computation and Applications, 2020, pp. 575–589.

[20] K. Florios and G. Mavrotas, “Generation of the exact pareto set in
multi-objective traveling salesman and set covering problems,” Applied
Mathematics and Computation, vol. 237, pp. 1–19, 2014.

[21] L. Paquete and T. Stützle, “Design and analysis of stochastic local
search for the multiobjective traveling salesman problem,” Computers
& Operations Research, vol. 36, no. 9, pp. 2619–2631, 2009.

[22] A. Alsheddy and E. E. K. Tsang, “Guided pareto local search based
frameworks for biobjective optimization,” in IEEE Congress on Evolu-
tionary Computation, 2010, pp. 1–8.

[23] C. Garcı́a-Martı́nez, O. Cordón, and F. Herrera, “A taxonomy and
an empirical analysis of multiple objective ant colony optimization
algorithms for the bi-criteria TSP,” European Journal of Operational
Research, vol. 180, no. 1, pp. 116–148, 2007.

[24] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

[25] Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm
based on decomposition,” IEEE Transactions on Evolutionary Compu-
tation, vol. 11, no. 6, pp. 712–731, 2007.

[26] W. Fang, Q. Zhang, J. Sun, and X. Wu, “Mining high quality patterns
using multi-objective evolutionary algorithm,” IEEE Transactions on
Knowledge and Data Engineering, vol. 34, no. 8, pp. 3883–3898, 2020.

[27] Y. Tian, L. Si, X. Zhang, R. Cheng, C. He, K. C. Tan, and Y. Jin,
“Evolutionary large-scale multi-objective optimization: A survey,” ACM
Computing Surveys, vol. 54, no. 8, pp. 1–34, 2021.

[28] L. Ke, Q. Zhang, and R. Battiti, “A simple yet efficient multiobjective
combinatorial optimization method using decompostion and pareto local
search,” IEEE Transactions on Cybernetics, vol. 44, pp. 1808–1820,
2014.

[29] A. Santiago, B. Dorronsoro, A. J. Nebro, J. J. Durillo, O. Castillo,
and H. J. Fraire, “A novel multi-objective evolutionary algorithm with
fuzzy logic based adaptive selection of operators: FAME,” Information
Sciences, vol. 471, pp. 233–251, 2019.

[30] J.-H. Yi, L.-N. Xing, G.-G. Wang, J. Dong, A. V. Vasilakos, A. H.
Alavi, and L. Wang, “Behavior of crossover operators in NSGA-III for
large-scale optimization problems,” Information Sciences, vol. 509, pp.
470–487, 2020.

[31] Y. Xie, S. Yang, D. Wang, J. Qiao, and B. Yin, “Dynamic trans-
fer reference point-oriented MOEA/D involving local objective-space
knowledge,” IEEE Transactions on Evolutionary Computation, vol. 26,
no. 3, pp. 542–554, 2022.

[32] Y.-D. Kwon, J. Choo, B. Kim, I. Yoon, Y. Gwon, and S. Min, “Pomo:
Policy optimization with multiple optima for reinforcement learning,” in
Advances in Neural Information Processing Systems, vol. 33, 2020, pp.
21 188–21 198.

[33] Y. Shao, J. C.-W. Lin, G. Srivastava, D. Guo, H. Zhang, H. Yi, and
A. Jolfaei, “Multi-objective neural evolutionary algorithm for combina-
torial optimization problems,” IEEE Transactions on Neural Networks
and Learning Systems, 2021.

[34] Y. Zhang, J. Wang, Z. Zhang, and Y. Zhou, “MODRL/D-EL: Multiob-
jective deep reinforcement learning with evolutionary learning for mul-
tiobjective optimization,” in International Joint Conference on Neural
Networks, 2021, pp. 1–8.

[35] P. Lacomme, C. Prins, and M. Sevaux, “A genetic algorithm for a bi-
objective capacitated arc routing problem,” Computers & Operations
Research, vol. 33, no. 12, pp. 3473–3493, 2006.

[36] K. Miettinen, Nonlinear multiobjective optimization. Springer Science
& Business Media, 2012, vol. 12.

[37] E. U. Choo and D. R. Atkins, “Proper efficiency in nonconvex multicri-
teria programming,” Mathematics of Operations Research, vol. 8, no. 3,
pp. 467–470, 1983.

[38] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems, 2017, pp. 5998–6008.

[39] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 770–778.

[40] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Instance normalization: The
missing ingredient for fast stylization,” arXiv preprint arXiv:1607.08022,
2016.

[41] D. Hendrycks and K. Gimpel, “Gaussian error linear units (gelus),” arXiv
preprint arXiv:1606.08415, 2016.

[42] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine Learning, vol. 8, no. 3,
pp. 229–256, 1992.

[43] I. Mehta, S. Taghipour, and S. Saeedi, “Pareto frontier approximation
network (PA-Net) to solve bi-objective TSP,” in IEEE 18th International
Conference on Automation Science and Engineering, 2022, pp. 1198–
1205.

[44] J. Blank, K. Deb, and P. C. Roy, “Investigating the normalization
procedure of nsga-iii,” in International Conference on Evolutionary
Multi-Criterion Optimization. Springer, 2019, pp. 229–240.

[45] H. Ishibuchi and T. Murata, “A multi-objective genetic local search al-
gorithm and its application to flowshop scheduling,” IEEE Transactions
on Systems, Man, and Cybernetics, Part C (Applications and Reviews),
vol. 28, no. 3, pp. 392–403, 1998.

[46] L. While, P. Hingston, L. Barone, and S. Huband, “A faster algorithm
for calculating hypervolume,” IEEE Transactions on Evolutionary Com-
putation, vol. 10, no. 1, pp. 29–38, 2006.

[47] T. Lust and J. Teghem, “Two-phase Pareto local search for the biobjec-
tive traveling salesman problem,” Journal of Heuristics, vol. 16, no. 3,
pp. 475–510, 2010.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 13

Mingfeng Fan received the B.Eng degree in Trans-
port Equipment and Control Engineering from Cen-
tral South University, Changsha, China, in 2019,
where she is currently pursuing the Ph.D. degree in
Traffic and Transportation Engineering. Her research
interests include machine learning and UAV path
planning.

Yaoxin Wu received the B.Eng degree in traf-
fic engineering from Wuyi University, Jiangmen,
China, in 2015, the M.Eng degree in control engi-
neering from Guangdong University of Technology,
Guangzhou, China, in 2018, and the Ph.D. degree
in computer science from Nanyang Technological
University, Singapore, in 2023. He was a Research
Associate with the Singtel Cognitive and Artificial
Intelligence Lab for Enterprises (SCALE@NTU).
He joins the Department of Information Systems,
Faculty of Industrial Engineering and Innovation

Sciences, Eindhoven University of Technology, as an Assistant Professor. His
research interests include combinatorial optimization, integer programming
and deep learning.

Zhiguang Cao received the Ph.D. degree from
Interdisciplinary Graduate School, Nanyang Tech-
nological University. He received the B.Eng. de-
gree in Automation from Guangdong University of
Technology, Guangzhou, China, and the M.Sc. in
Signal Processing from Nanyang Technological Uni-
versity, Singapore, respectively. He was a Research
Fellow with the Energy Research Institute @ NTU
(ERI@N), a Research Assistant Professor with the
Department of Industrial Systems Engineering and
Management, National University of Singapore, and

a Scientist with the Agency for Science Technology and Research (A*STAR),
Singapore. He joins the School of Computing and Information Systems,
Singapore Management University, as an Assistant Professor. His research
interests focus on learning to optimize (L2Opt).

Wen Song received the B.S. degree in automation
and the M.S. degree in control science and engi-
neering from Shandong University, Jinan, China, in
2011 and 2014, respectively, and the Ph.D. degree
in computer science from Nanyang Technological
University, Singapore, in 2018. He was a Research
Fellow with the Singtel Cognitive and Artificial
Intelligence Lab for Enterprises (SCALE@NTU).
He is currently an Associate Research Fellow with
the Institute of Marine Science and Technology,
Shandong University. His current research interests

include artificial intelligence, planning and scheduling, multi-agent systems,
and operations research.

Guillaume Sartoretti joined the Mechanical En-
gineering department at the National University of
Singapore as an Assistant Professor in 2019. Before
that, he was a Postdoctoral Fellow in the Robotics
Institute at Carnegie Mellon University. He received
his Ph.D. degree in robotics from EPFL in 2016.
He also holds a B.S. and an M.S. degree in Mathe-
matics and Computer Science from the University
of Geneva. He is interested in the emergence of
collaboration/cooperation in large groups of intelli-
gent agents making individual choices based on their

local understanding of the world.

Huan Liu received the B.S. degree in Transportation
Engineering from the Wuhan University of Tech-
nology, China, in 2018, and the M.S. degree in
Traffic and Transportation Engineering from Central
South University, Changsha, China, in 2021. She is
currently pursuing the Ph.D. degree in traffic and
transportation engineering at Central South Univer-
sity, Changsha, China. Her research interests include
UAV path planning and task assignment.

Guohua Wu received the B.S. degree in Information
Systems and Ph.D degree in Operations Research
from National University of Defense Technology,
China, in 2008 and 2014, respectively. During 2012
and 2014, he was a visiting Ph.D student at Univer-
sity of Alberta, Edmonton, Canada. He is currently a
Professor at the School of Traffic and Transportation
Engineering, Central South University, Changsha,
China. His current research interests include Plan-
ning and Scheduling, Computational Intelligence
and Machine Learning. He has authored more than

100 referred papers including those published in IEEE TCYB, IEEE TSMCA
and IEEE TEVC. He serves as an Associate Editor of Information Sciences,
and an Associate Editor of Swarm and Evolutionary Computation Journal, an
editorial board member of International Journal of Bio-Inspired Computation,
and Guest Editors of several journals.

