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Abstract: In recent years, the field of aerial robotics has witnessed significant progress, finding applications
in diverse domains, including post-disaster search and rescue operations. Despite these strides, the prohibitive
acquisition costs associated with deploying physical multi-UAV systems have posed challenges, impeding their
widespread utilization in research endeavors. To overcome these challenges, we present STAR (Swarm Technol-
ogy for Aerial Robotics Research), a framework developed explicitly to improve the accessibility of aerial swarm
research experiments. Our framework introduces a swarm architecture based on the Crazyflie, a low-cost, open-
source, palm-sized aerial platform, well suited for experimental swarm algorithms. To augment cost-effectiveness
and mitigate the limitations of employing low-cost robots in experiments, we propose a landmark-based localiza-
tion module leveraging fiducial markers. This module, also serving as a target detection module, enhances the
adaptability and versatility of the framework. Additionally, collision and obstacle avoidance are implemented
through velocity obstacles. The presented work strives to bridge the gap between theoretical advances and
tangible implementations, thus fostering progress in the field.
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1. INTRODUCTION

In recent times, autonomous robots have experi-
enced a steady increase in their penetration in var-
ious domains. In industrial settings, their utilisa-
tion is increasingly becoming more prevalent in tasks
such as manufacturing and logistics [1]. However, the
adoption of autonomous robots in practical scenarios
is still laden with challenges such as high acquisition
costs, deployment in unknown indoor environments,
and adapting to the high cost and technological diffi-
culties of deploying large fleets of aerial robots often
hinder experimental validation. That is, most work
still focuses on simulations [2,3], and physical experi-
mental implementations often experience issues such
as inaccurate onboard localization [4]. Also, most re-
search quadcopters are large and need large space to
operate, therefore small quadcopters became an at-
tractive alternative to operate large swarms. There-
fore, based on the work of [5], we propose STAR,
a framework for indoor physical swarm experiments
that aims to address these limitations. This paper
provides a summary of our framework and discusses
its significance for the aerial swarm research commu-
nity.

The main contributions of this paper are as fol-
lows:
• A robust swarm management framework utilizing

ROS2 for managing physical aerial swarms with
integrated task manager and collision avoidance.

• We implemented a versatile landmark-based lo-
calisation module that is cost effective and allow
the swarm system to be independent of expensive
motion capture system. This module also provide
target tracking capabilities.
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Fig. 1. Aerial swarm controlled with STAR.

• We developed a simulation environment that ac-
curately simulates both the environment and
landmark markers tracking. Thus reducing the
gap between simulated and real-world perfor-
mance through an improved and realistic custom
camera model.

• We provide validation results for the proposed
landmark-based localisation approach, showing
that it effectively limits UAV localisation errors.

• Our swarm framework is made available as open
source to the robotics research community1.

2. RELATED WORKS

Aerial swarms have been experimented with for
various purposes such as formation flight, trajectory
control, and numerous works that has been proposed
for operating them. [6] described a software frame-
work for aerial robotics that aims to streamline the
development of multi-robot systems. By leveraging
1Source code available at: https://github.com/STAR-
swarm/STAR



ROS 2 middleware and a modular software architec-
ture, Aerostack2 offers platform independence, ver-
satility, and multi-robot orientation, making it suit-
able for a wide range of UAV applications. Although
the framework covers a wide range of robot capa-
bilities, there may be scenarios in which additional
customization or integration with specific hardware
components is necessary.

[7] introduces a ROS 2 toolbox tailored for
swarms of Crazyflie nano-quadrotors, enabling re-
alistic simulations and experiments. It provides a
modular framework for fast prototyping of decision-
making and control schemes, handling each Crazyflie
with independent ROS 2 processes to reduce sin-
gle points of failure. By integrating with Webots
and firmware bindings, CRAZYCHOIR enables dis-
tributed optimization, cooperative decision-making,
and communication among nano-quadrotors.

Another notable work is Crazyswarm [8], which
features a robust and synchronized control architec-
ture for large indoor quadcopter swarms. Built on
the Crazyflie platform, it leverages onboard compu-
tation to ensure reliability against communication is-
sues while requiring minimal radio bandwidth. The
system demonstrates good scalability in terms of la-
tency and tracking performance as the swarm size in-
creases. However, these works face limitations, such
as dependence on a motion-capture system, which
serves as a single point of failure, and the high ac-
quisition cost. This presents a fundamental chal-
lenge for operating UAVs experimentally in indoor
environments. Indoor localization methods include
ultra-wideband (UWB) [9] or external anchor sys-
tems like [10]. The high cost of these systems can
hinder experimental validation of aerial swarm algo-
rithms. Additionally, these systems depend on ex-
tra radios and sensors for localization, which reduce
the UAV’s endurance without adding any mission
capability [4]. All these frameworks rely on motion
capture systems, restricting the design of cluttered
environments as they might obstruct the cameras.

In addition to the challenge of localization, col-
lision avoidance (CA) emerges as a significant hur-
dle. The CA problem is especially challenging for
nano-sized quadrotors due to limited payload, sens-
ing, and computing power. [11] described a hybrid
deep reinforcement learning (DRL) approach that
combined real-world and simulation data to avoid
static obstacles with a monocular camera mounted
on a Crazyflie. Predictive control-based model ap-
proaches were studied in [12] with indoor experi-
ments using Crazyflies.

3. FRAMEWORK OVERVIEW

We consider the problem of coordinating a team
of aerial robots with the ability to conduct a range
of mission, which includes but not limited to target

Fig. 2. STAR Framework Overview.

search and path planning. We are interested in the
development of an integrated swarm framework that
spans the entire mission spectrum, commencing from
the take-off phase and culminating in the landing
stage. Fig. 2 describes our STAR framework.

In the framework, we leverage the Crazyswarm2
communication protocol [5] to handle communica-
tions between the ground computer and the swarm.
Building upon this communication layer, we devel-
oped an application layer that allows user to formu-
late mission plan in an unified manner. The applica-
tion layer also implements landmark-based localiza-
tion as well as offers target detection, which allows
researchers to craft mission such as target search sce-
narios. To minimize sim2real gap, we also provide a
lightweight simulator, which visualize the obstacles,
landmark marker placement, as well as the camera
field of vision. This enabled researchers to conduct a
sanity check of their code and framework configura-
tion before conducting physical experiments, thereby
reducing the errors encountered during physical ex-
periments.

3.1 Vehicle
Our framework utilizes the readily available and

low-cost Bitcraze Crazyflie 2.1, equipped with an
STM32F405 Motion Control Unit (MCU) for iner-
tial state estimation and motor control onboard. En-
hancements include the Bitcraze Flow deck v2, fea-
turing a Time-of-Flight (TOF) sensor for height es-
timation and an optical flow sensor for motion com-
putation, enabling 3D pose estimation. We also at-
tached the AI Deck 1.1, which adds a GAP8 SoC,
a monochrome camera, and an ESP32 WiFi chip
for streaming images to the Ground Control Station.
The Crazyflie, compact and ideal for indoor flights,
excels in tight formations and large numbers, and its
low inertia minimizes injury risk during crashes.

3.2 Communications
Each robot is equipped with the ability to trans-

mit telemetry data to the ground control station
(GCS) via a 2.4GHz radio. For communication with
the UAV while it is on the ground, we employ the



request-response technique from [5] to set parameters
like controller gains. During flight, the framework
uses the broadcast communication method from [5]
to send its position and various mission commands,
including take-off, landing, and the next setpoint.
Additionally, we use WiFi-based communication to
transmit visual observations from the onboard cam-
era to the GCS.

3.3 Task Manager
The Task Manager is the central coordinator that

unifies algorithmic elements and guides task execu-
tion within the system. Its functions encompass:
• Overseeing swarm operations (agent initiation,

status updates, etc.)
• Implementing fundamental swarm directives (take-

off, movement, landing, etc.) and prede-
fined/scripted scenarios

• Fusing swarm reasoning and algorithm integra-
tion (task distribution, collision and static obsta-
cle evasion, etc.)

• Execution of instructions from external modules,
such as a search planner for target search mission.
The key elements of the Swarm Manager and their

integration are depicted in Fig. 2. In our framework,
the developer can create a mission plan outlining the
tasks that the swarms need to accomplish during a
specific mission in a single yaml file. These tasks
could be specified for a single UAV or for the whole
swarm. These mission plans are defined as actions
that the robot will perform autonomously, such as
following the commands of a search planner.

3.4 Collision Avoidance
In our framework, the UAV receives waypoints

that it needs to follow, and the collision avoidance
module handles path planning. This involves gen-
erating intermediate waypoints to reach the given
set points. Consequently, a lower-level velocity con-
troller is responsible for navigating to these inter-
mediate waypoints, taking into account both static
obstacle avoidance and inter-agent collision preven-
tion. In scenarios without obstacles, the velocity con-
troller directs the agent using a velocity vector aimed
directly at the intermediate waypoint. To ensure
safety, we implemented Optimal Reciprocal Collision
Avoidance (ORCA) for static obstacle avoidance and
inter-agent collision prevention [13]. Due to the sens-
ing limitations of UAVs, this framework primarily
considers virtual obstacles. However, inter-UAV col-
lision avoidance is calculated in real-time using ac-
tual UAVs’ position data.

ORCA determines an alternative safe velocity
close to the intended velocity by considering Veloc-
ity Obstacles (VOs) (i.e., the vector pointing directly
towards the intermediate waypoint). VOs delineate
the potential collision range between two agents, de-
noted as V Oτ

A|B , within a specified duration, τ . If
the current relative velocity, vA|B , lies within V Oτ

A|B ,

Fig. 3. Illustration of collision avoidance. 2D
polygonal surfaces (pink edges) can be derived from
3D obstacle maps, with virtual agents at key points
along these edges. The ORCA algorithm can then
be used for static obstacle avoidance.

ORCA identifies a viable velocity, orcaτ
A|B , closest

to the intended velocity while avoiding collisions. In
multi-agent scenarios, a sector of feasible velocities,
ORCAτ

A|B , tangential to V Oτ
A|B at orcaτ

A|B , is de-
fined. This transforms collision avoidance into a lin-
ear programming problem (see Equations 1 and 2),
aiming to select an optimal feasible velocity, vnew

A ,
closest to the intended velocity, vdes

A , within the in-
tersection of all ORCA-defined sectors, ORCAτ

A .

ORCAτ
A =

⋂
B ̸=A

ORCAτ
A|B (1)

vnew
A = arg min

v∈ORCAτ
A

∥v − vdes
A ∥ (2)

ORCA can also be applied for static obstacle
avoidance (see Fig. 3). Nonetheless, the complex-
ity arises from the need to effectively define VOs in
a manner that avoids excessive conservative avoid-
ance, especially concerning large obstacles. To ad-
dress this, a pragmatic approach is to model ob-
stacles as polygons outlined by line segments. By
identifying interpolated points along these edges that
are significant for collision prevention. These inter-
polated points can then be treated as fixed virtual
agents, augmenting ORCA for inter-agent collision
avoidance. Note that, we use visibility graphs to cal-
culate these points efficiently.

3.5 Landmark-based localisation
In our proposed framework, we use AprilTags as

landmark markers, a visual fiducial system similar
to QR codes, and address the localization problem
as landmark-based Simultaneous Localization And
Mapping (SLAM) with the GTSAM toolbox [14].
AprilTags can be easily printed and affixed, offer-
ing robust and affordable localization aids. Due to
the inherent attributes of an AprilTag, its tag ID
and predefined 6 DOF pose relative to the camera,
the UAV can accurately determine its own pose and
orientation in relation to the AprilTag.

Given that the global coordinates of the April-
Tag landmarks are known a priori, we encode the



Fig. 4. Landmark-based SLAM factor graph.

Apriltag poses as an observed landmark li into our
factor graph (see Fig. 4). The Extended Kalman
Filter (EKF) estimated pose computed from fusing
the Inertial Motion Unit (IMU), optical flow and
rangefinder measurements, are represented by xi and
the solid black circles are factors which represent the
constraints defined by the change in pose between
each time step. The landmark SLAM problem then
minimizes the non-linear error between all the nodes
in the factor graph using algorithm 1 [15].

Algorithm 1 Nonlinear optimization for factor
graph: τ0: Initial set of estimated poses, X: pose
variable, T̃ij : Pose constraints between poses Ti and
Tj , ξ: incremental local coordinates, A: Jacobian
matrix, b: bias term, k: pose constraint index
1: Given initial pose estimate τ0 = {X1, . . . , XN}
2: while error across all pose constraints k,∑

k
1
2∥log(T̃ −1

ij Ti
−1Tj)∥2 not converged do

3: Linearize the factors 1
2∥log(T̃ −1

ij Ti
−1Tj)∥2 ≈

1
2∥Aiξi + Ajξj − b∥2

4: Solve least squares problem ξi
∗ =

argminξ

∑
k

1
2∥Akiξi + Akjξj − bk∥2

5: Update pose variable Xt+1
i ← Xt

j∆(ξi)
6: end while

Consequently, this empowers the UAV with the
capability to re-localize itself by effectively situating
its position within the broader environmental con-
text. To enhance localization accuracy, we employ
a dual marker setup at each landmark point and
present an ablation study in Chapter 5.. This config-
uration provides the UAV a pair of reference points
to rectify its positioning.

Beyond acting as a landmark, AprilTags can also
represent targets such as survivors or checkpoints
which act as mission objectives.

4. SIMULATION TOOL
A lightweight simulator is also developed to pro-

vide a simulation environment for researchers to
validate their algorithms and framework configura-
tions before hardware deployment. The simulation
is visualized through RVIZ2, while the computation
is achieved by leveraging the Crazyflie’s firmware

Fig. 5. Illustration of simulation environment:
Each UAV’s orientation is depicted as a coordinate
axis (with red representing the x-axis, green for y,
and blue for z). The camera model is illustrated by
white trapeziums.

python bindings and numerical integration [7]. We
also visualised the obstacles as wire-frame objects as
well as the landmark markers. This allows the de-
veloper to validate the the configuration file used in
the intended experiment setup, i.e., position of land-
mark markers are coded in the framework as desired
in the physical setup (see Fig. 5). This could be eas-
ily adjust based on the developer test environment
by adjusting the config yaml file of the software. In
our simulation, up to 20 UAVs could be simulated
concurrently.

5. EXPERIMENT
We conducted experiments to measure the various

performance metrics of our framework, as well as to
validate the landmark localization module.

5.1 Experiment setup
We conducted an experimental validation of the

real-world performance of the landmark localisation
module by executing flights along three predeter-
mined flight paths: Box, Circle and Figure 8 pat-
terns (see Fig. 6). For each of the trajectory, three
laps were clocked. The actual travelling distance for
each trajectory is 28.41m, 37.16m, and 50.32m for
the box, circle and Figure 8 respectively. To mea-
sure the mean square error of the position estimate
computed by the landmark localization module, we
also record the ground-truth position of the UAV us-
ing position estimates from the VICON system. The
landmark markers are placed within a 4m by 4m fly-
ing area, in the configuration shown in Fig. 6. Their
positions remained constant across all experiments.
For the experiments, the UAV flew at a constant
height of 0.8m and the maximum speed is limited to
0.3m/s.

5.2 Position estimate performance
We assess the position estimate error by compar-

ing the VICON estimates with those from the land-
mark localization module. The mean square error of
these comparisons is calculated and presented in Ta-



Fig. 6. Experiment setup: Flying area is 4m by
4m. Top: Types of test trajectories (Orange arrows
indicates direction of drone path).

Table 1. Comparison of localisation performance
across numerous trajectories: We report the mean square
error (m2) and its standard deviation from the VICON posi-
tion (lower is better).

Landmark
configura-

tion

Box Circle Figure 8

No Tag 0.25(±0.23) 0.24(±0.25) 0.64(±0.43)
1 tag 0.19(±0.17) 0.20(±0.19) 0.26(±0.26)
2 tags 0.16(±0.18) 0.13(±0.17) 0.19(±0.18)

ble 1. Additionally, we conducted ablation tests to
evaluate the impact of the marker configurations on
position estimate accuracy. Specifically, we tested
three configurations: no markers, a single marker,
and dual markers (each the size of an A4 sheet) at
each landmark point. The outcomes of these tests
are also summarized in Table 1.

Our ablation study results demonstrate that in-
creasing the number of landmarks reduces the posi-
tion estimate error of the box, circle and Figure 8
trajectories by 36.0%, 45.8%, and 70.3% respec-
tively. We observed that pure optical flow tends to
diverge on more complex trajectories, whereas our
landmark localization module maintains consistent
position estimation performance, demonstrating its
robustness in challenging flight paths.

However, it is important to note that the improve-
ment in position error is not directly proportional
to the number of markers per landmark. This non-
linear relationship likely stems from a trade-off be-
tween the benefits and drawbacks of adding more
markers. While additional markers provide more
data points, enhancing the landmark localization
module’s ability to correct positions accurately, they
also introduce more noise into the system. Given
that marker detection relies on vision-based meth-
ods, which can be error-prone, each extra marker
increases the likelihood of detection errors. Conse-
quently, although more markers have the potential
to improve accuracy, the associated noise can offset
these gains, resulting in diminishing improvements.

It is important to highlight that the pose estimate

Fig. 7. Trajectory comparison for circle tra-
jectory with 2 tags. Ground truth position (blue
solid line), landmark-localized position(orange solid
line).
adjusts itself upon detecting fiducial markers, as il-
lustrated in Fig. 7. The irregularities in the or-
ange path, as compared to the blue path (VICON
ground truth) suggest that a new position was com-
puted. This validation highlights the effectiveness of
the landmark location module in correcting position
estimates and limit localization errors. Without this
module, localization errors could accumulate signifi-
cantly, resulting in a drift that makes the localization
unreasonable for normal flight, as demonstrated in
the Figure 8 test trajectory experiment. Our land-
mark localization approach ensures stable localiza-
tion performance in physical aerial swarm experi-
ments. Additionally, the system allows for the oc-
clusion of some landmark points, meaning that not
all landmarks are necessary for position correction.
This flexibility allows researchers to design experi-
ments with cluttered obstacles, which is challenging
with a motion capture system.

5.3 System latency

The overall system performance is affected by the
latency in receiving corrected position estimates. To
analyze this, we collected data presented in Table 2.
The image capture rate measures how quickly the
camera sensor captures an image, while the image
transfer rate shows how often the image is sent to
the ground computer. The marker processing time,
which is 0.163 seconds (or 6Hz), indicates the dura-
tion to compute a corrected position. The bottle-
neck is the marker processing time, which leads to
a landmark-based localization correction frequency
of 6Hz. This is a reasonable frequency for position
corrections.

Table 2. System latency metrics

Image capture
time (ms)

Image transfer
rate (Hz)

Marker
processing

time (s)

65-66 8-9 0.163



6. CONCLUSION
This paper introduces a novel framework to the

research community, providing support for advances
in aerial swarm robotics tasks. The framework’s key
attributes include versatile and modular setup op-
tions that are affordable, while being independent
of expensive motion capture system. We designed
STAR to cover the entire mission spectrum, start-
ing from simultaneous take-off and ending with land-
ing, facilitated by a unified task manager. We also
achieved stable and reasonable localization through
our landmark localization approach. We validated
STAR through real-world experiments, validating its
position estimates as well as various system perfor-
mance. In the future, our goal is to develop a swarm
framework that allows physical UAVs to join or leave
the team dynamically. The ability of UAVs to join or
exit the swarm is crucial in scenarios where they may
be needed to enhance the capabilities of the team to
complete their mission or undergo maintenance. Ad-
ditionally, we plan to explore peer-to-peer communi-
cation among UAVs to establish a truly decentralized
swarm framework, thus enhancing research efforts in
decentralized aerial swarm tasks. Our ongoing objec-
tive is to further enhance the STAR framework, cre-
ating a robust platform poised to benefit the aerial
swarm research community.
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