
Heterogeneous Multi-robot Task Allocation and
Scheduling via Reinforcement Learning

Weiheng Dai1†, Utkarsh Rai2, Jimmy Chiun1, Cao Yuhong1, Guillaume Sartoretti1

Abstract—Many multi-robot applications require allocating a
team of heterogeneous agents to complete a given set of spatially
distributed tasks as quickly as possible, such as search and rescue,
area inspection/monitoring, and space exploration. We focus on
tasks which can only be initiated when all required agents have
arrived, such as detection involving sensor fusion or cooperative
assembly requiring robots with different tools/skillsets. Robots
dynamically form and disband teams based on diverse abilities
needed for each task, which, however, can potentially result in
extra idle (waiting) times at the task location. Robots (agents)
should take into account the schedules of others to maximize
their collective efficiency and reduce overall task completion
time (makespan). Conventional methods such as mix-integer
programming generally require centralized scheduling and long
optimization time, which limits their potential for real-world
applications. In this work, we propose a decentralized method
that fully relies on reinforcement learning (RL) to train a gener-
alized policy applicable to heterogeneous agents. To address the
challenge of complex cooperation learning, we further introduce
a constrained flashforward mechanism to guide/constrain the
agents’ exploration and help them make better predictions.
Through an attention mechanism that reasons about both short-
term cooperation and long-term scheduling dependency, agents
learn to reactively choose their next tasks (and subsequent coali-
tions) to avoid wasting abilities and to shorten the makespan. We
compare our method with state-of-the-art heuristic and mixed-
integer programming methods, demonstrating its generalization
ability and showing it closely matches or outperforms these
baselines while remaining at least two orders of magnitude faster.

I. INTRODUCTION

Multi-robot systems (MRS) are increasingly preferred over

single-robot systems in many applications due to their ability

to collaborate, resist robot failures, and tackle complex tasks

that would be difficult or impossible for a single robot to ac-

complish. Deployments of MRS in applications like search and

rescue [1], [2], space exploration [3] and healthcare [4] may

require a team of heterogeneous robots with various motion,

function, and perception abilities to tightly collaborate. For

example, search and rescue [5] may involve ground and aerial

robots working together to locate survivors through sensor

fusion (e.g., camera and infrared) to avoid false positives,

while collaborative assembly [6] may require robots with

different manipulator/tools, e.g., mechanism to raise, gripper

to hold, or tool to fasten. In this work, we focus on such

scenarios, where robots need to sequentially execute a set of

spatially distributed tasks requiring tight cooperation. That is,
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Fig. 1. Cooperative search and rescue in various environments. Vectors
represent robots’ abilities and rescue tasks’ requirements, with each element
indicating possession of a unique skill from relaying, sensing, bandaging, or
obstacle removal, respectively. Schedules of robots are shown as arrows.

each task may require multiple robots with different skills and

can only be started when all required robots have arrived.

Therefore, to minimize the makespan of the mission, agents

must reason about inherent cross-dependencies among differ-

ent agents/tasks (i.e., correlations between agents’ schedules)

to form/predict the best coalition for each task, synchronize

their arrivals to tasks to minimize waiting times, and carefully

schedule the sequential/parallel execution of tasks.

Such problems are known as Multi-Robot Task Allocation

(MRTA) problems, where the complexity exponentially grows

with the number of robots, tasks, and required skills. Existing

MRTA solvers can be mainly categorized into heuristic meth-

ods [7]–[9], mixed-integer programming (MIP) methods [10]–

[13], and learning-based methods [14], [15]. State-of-art MIP-

based methods [10], [12] typically rely on centralized opti-

mization, which can derive exact solutions for each agent’s

route through one-shot assignment. Recently, learning-based

methods [14], [15] relying on sequential decision-making

have shown great potential to balance runtime and solution

quality, particularly in large-scale scenarios involving time-

critical situations or frequent replanning. However, all these

methods suffer from the impact of deadlocks where all agents

cannot complete their current tasks because they are waiting

for each other. For optimization-based methods, deadlocks can

make them struggle to find a good or even any solution in

larger instances within reasonable time. For learning-based

methods, deadlocks can significantly hinder training efficiency

as agents can hardly learn any useful strategies from incom-

plete experiences (failed episodes).

In this work, we propose a novel reinforcement learning

(RL) approach to obtain a decentralized cooperative policy en-

acted by all agents, which can generalize to arbitrary scenarios

(with a single constraint on the maximum number of unique



skills among agents). By relying on attention mechanisms,

agents learn to reason about the cross-dependencies among

task locations, agents skills, and current status of other agents,

as well as the status of all tasks, to make reactive decisions

on which task to execute next. By doing so, agents naturally

form/disband coalitions by converging on or diverging from

tasks, iteratively creating cooperative schedules. To address

the challenges posed by cooperation learning and complex

cross-dependencies, we propose a constrained flashforward
mechanism (CFM) to constraint tasks that agents can select

and manipulate the order in which they make decisions dur-

ing training, while ensuring the policy remains decentralized

during inference time. This mechanism helps agents search for

a suitable decision order and learn to make better predictions

of each others’ intent through sometimes acquiring their future

actions, thereby mitigating the risk of deadlocks and improv-

ing the overall cooperation. As a result, our approach en-

ables agents to iteratively and cooperatively build high-quality

schedules much faster than existing optimization methods,

making our approach particularly suitable for deployments in

time-critical situations or requiring frequent replanning and

complex coalitions. We empirically show that our policy can

generalize to different scenarios without further tuning and

scale up to 150 agents and 500 tasks, with up to 5 skills. Our

results indicate that, in simple problems, our method can match

or outperform an MIP-based exact solver [12] and a heuristic

method [7] while being at least two orders of magnitude faster.

In complex scenarios, we can solve instances where an exact

solver cannot find any solution even when given hours of

computing time.

II. RELATED WORK

A. Multi-robot Task Allocation and Scheduling

Multi-robot task allocation problems are categorized along

three axes according to Gerkey’s taxonomy [16]: single-task

(ST) vs. multi-task (MT) robots, single-robot (SR) vs. multi-

robot (MR) tasks, and instantaneous assignment (IA) vs.

time-extended assignment (TA). Many well-studied problems

fall into the ST-SR-TA category such as traveling salesman

problem (TSP) [17] and vehicle routing problem (VRP) [18].

However, these problems only address scenarios where each

task only requires one agent. Recently, research has increas-

ingly shifted towards the ST-MR-TA category, which is the

focus of our work. Methods like [19] used decentralized

auction algorithms to address automated construction tasks

with cross-dependencies, but they only focused on small teams

and lacked replanning abilities. Other centralized approaches

use mixed integer programming (MIP) [10], [12], [13], heuris-

tics [9], [20], and evolutionary algorithms [7], [8]. Many of

these works [9], [13], [20] do not consider tight cooperation,

allowing agents to complete their portion of each task indepen-

dently from others, thus neglecting the time-synchronization

of agents at tasks. Recently, Fu et al. [12] introduced an

optimization framework for task decomposition, scheduling,

and coalition formation based on MIP, which also accounts for

the risk of task completion and uncertainties in agent abilities.

However, MIP-based methods often require long optimization

times, particularly for large-scale problems. Other evolutionary

methods rely on Ant Colony Optimization (ACO) [7] to solve

Collab-MTSP instances that considers tight cooperation in

TSP, generating solutions with quality comparable to MIP.

Liu et al. [8] applied Particle Swarm Optimization (PSO)

and local search to find near-optimal solutions considering

multiple objectives and precedence. However, these methods

focus on tasks requiring coalition of only a few agents and

cannot handle difficult tasks with complex dependencies.

B. Deep Learning-based Task Allocation and Scheduling

Many recent approaches have focused on deep learning-

based methods, which have proven effective for large-scale

scenarios and long-term objectives. By shifting the compu-

tational cost from inference to training, these methods can

find near-optimal solutions more quickly when deployed,

making them suitable for real-world applications. Works such

as [21], [22] utilize deep RL with Transformer-style networks

to solve job shop scheduling and TSP in a data-driven man-

ner and exhibit great scalability. To address spatial-temporal

constraints and coordination of agents, [23], [24] framed

the problem as a sequential decision-making problem and

iteratively added new edges to the solution graph through

attention-based networks. Despite the discussed strengths,

these methods primarily focus on single-agent tasks without

explicit cooperation among agents, thus they cannot organize

agents into sub-teams/coalitions, which is crucial for handling

tasks with complex requirements. Recent works such as [14],

[15] tackle these limitations by using Graph Attention Net-

works (GATs) to learn a scalable decision policy for teams of

cooperative agents. However, methods like [15] require a large

amount of expert demonstration data to do imitation learning.

RL methods like [14] only consider a homogeneous team

where all the tasks require the same skill. In this paper, we

propose a general decentralized decision-making framework

for heterogeneous multi-robot task allocation problems that

does not require any demonstration data.

III. PROBLEM FORMULATION

We use a species-traits model as defined in [12], [25], [26],

where an MRS is described as a community of agents. In

this model, each agent belongs to a species with a unique

set of traits encoding the agent’s skills. We consider a set

of species S = {s1, s2, . . . , sks
} and a set of agents N =

{a1, a2, . . . , akn
}, where each species si contains nsi agents

such that kn =
∑ks

i=1 nsi . Agents in the same species are

identical, and each agent aj in species si possesses a trait

vector caj = csi = [cj1, c
j
2 . . . , c

j
kb
], where kb ∈ Z

+ is the

number of unique skills, cj ∈ N represents the capability for

each skill of agent aj . When several agents form a coalition

L, the trait vector of this coalition cL will be the element-wise

sum of individual agents’ trait vectors.

Agents of the same species start at a common species

depot. For convenience, S also represents the set of (dif-

ferent) species depots. These agents must complete all tasks

M = {m1,m2, ...,mkm
} spatially distributed within a given

2D domain, and then return to their depot(s). Without loss of

generality, the domain is normalized to a [0, 1] × [0, 1] ⊂ R
2



area, and the location of each task (and depot) is denoted as

(xi, yi), where i ∈ S ∪ M . Each task mj is associated with

a trait requirement qmj
= [qj1, q

j
2, . . . , q

j
kb
] and a execution

duration tmj
. Here, qj ∈ Z

+ suggests the minimum required

capability of this skill to start the task, and tmj ∈ R
+

represents the execution time needed for agents to complete

the task once assembled at task location. To start a task,

trait requirements must be satisfied by the assigned coalition,

denoted as cL � qmj
, where � is an element-wise greater-

than-or-equal-to operator, and all assigned agents must be

present at the task location for the entire execution duration.

Though agents may arrive at the task location at different

times, they must wait until all collaborating agents are present.

We then define all tasks and depots on a complete graph G =
(V,E), where V = S ∪M is the set of vertices, and E is the

set of edges connecting all vertices denoted as (vi, vj), ∀vi �=
vj , where vi, vj ∈ V . Each vertex vi represents the status

(e.g., requirements, location, etc.) of a task (or a depot) and

each edge contains a weight of Euclidean distance between

two connected vertices. Similarly, we define an agent graph

GA = (N,EA), where each vertex represents agent’s status.

Agents are always in one of three states during reactive

scheduling: 1) waiting for other agents at a task location to

initiate it, 2) executing a task, 3) traveling from one task (or

depot) to another. Each agent’s total working time is the sum

of the time spent on each state from the start to the return to

its depot. Our objective is to minimize the makespan, which is

the maximum total working time among all agents. Formally,

we define the solution as a set of routes for each individual

agent as Φ = {φa1 , . . . , φan}, where φai = (vs, vi1 , . . . , vs)
is a sequence of tasks that agent ai visits or executes, vs is

the agent species depot, and each vi is a task it (co-)executed.

IV. METHODOLOGY

In this section, we cast MRTA problem into a RL problem

and illustrate details of our network and training.

A. Task Allocation via Sequential Decision-making

We formulate this problem as a decentralized sequential

decision-making problem with global communication, allow-

ing agents to broadcast their information (e.g., task status

and agent’s working condition). Starting from a depot, each

agent independently chooses its next task upon completing

the current one. This process iterates until all tasks have been

completed and all agents have returned to their species depots,

thus each agent can construct a route φai
. We allow agents

to select their next tasks in a sequentially-conditional manner

such that they can consider all previous actions taken by the

others. That is, each time an agent chooses its next task, we

instantly update the observations of all other agents regarding

that agent’s position and the coalition status of that task (e.g.,

remaining task requirements) to inform them of the agent’s

decision. These tasks are rarely completed at the same time,

which naturally lets agents at different tasks make decisions

asynchronously at different decision steps. However, agents

in the same coalition working and finishing simultaneously

will select their next tasks at the same decision step. There,

we randomize the order in which agents choose to enhance

generalization for real deployments.

B. Stabilized Training via Constrained Action Ordering

In our problem, a task can only ever be in one of four

states: empty (no agent at/en route to the task), open (task

requirements not met by agent(s) at the task), in-progress
(task requirements met by agent(s) at the task) or completed.

Minimizing the overall makespan requires agents to complete

as many tasks as possible in parallel. However, we observed

that agents often tend to over-simplify this goal, by instead

learning to open as many parallel tasks as possible, in the

(vain) hope of completing all of them, despite not having

enough agents to form that many suitable coalitions. This often

results in deadlocks, where all agents are idly waiting at open

tasks that will never be completed. It prevents the completion

of the episode and robs the team from any useful experience to

improve their policies, thus destabilizing the training process.

To reduce this undesirable (extreme) scattering of the

agents, it is vital to guide the agents’ exploration and prevent

deadlocks by either constraining 1) the number of deciding

agents, or 2) the agents’ actions space. In homogeneous cases,

our recent work proposed a leader-follower framework to

reduce deadlocks during training [14]. We let a leader agent

from each coalition make the next task decision and force the

right amount of agents to follow the leader, to maximally fill

the selected task. However, this approach cannot be naturally

extended to our heterogeneous setting, where it is difficult

to identify the “right” followers among heterogeneous agents.

Differently, the approach in [7] employs a deadlock reversal

step to release waiting agents and reassign them to the selected

waiting task until the deadlock is undone. However, this

approach relies heavily on backtracking agent decisions, which

would call for frequent and costly jumps backward in time

during training to adjust agents’ actions, states, and rewards.

In this work, we propose a constrained flashforward mech-

anism to constrain the agents’ action space and occasionally

integrate future knowledge about other agents during training.

This mechanism helps agents search for suitable decision order

and learn to make better predictions of each others’ intent

through sometimes acquiring their future actions, thereby

reducing the likelihood of deadlocks and improving overall

cooperation. Our CFM consists of three components:

1) Maximum-open-task strategy: We restrict agents to se-

lect empty tasks when the number of open tasks has reached a

maximal value. This prevents agents from trying to open too

many tasks in parallel, to instead prioritize task completion,

and thus reduces the likelihood of deadlocks.

2) Ability mask: This mask M only allows agents to

choose tasks where they can help decrease the remaining

requirements. For example, an agent with only an ultrasonic

sensor cannot select a task currently only missing a camera.

3) Decision order: Most importantly, we manipulate the

order in which agents make decisions, as it can drastically

impact the formation of deadlocks. Given the two components

mentioned above, an agent may sometimes find itself unable

to choose any task based on its current circumstances (i.e., it



cannot contribute to any of the open tasks, and cannot open

a new one). In this case, we allow the agent to postpone its

decision until it can open a new task. Specifically, we first

let all other deciding agents at this time step select their next

task. We then cycle back to the problematic agent, in the hope

that some of the open tasks are now filled, in which case the

agent is now free to open a new empty task. However, if by

the end of the decision step, this agent still has no valid task

to select, we freeze its state for now and wait until the next

decision step. There, we let all new deciding agents select their

next task, and then cycle back again to this agent given the

future actions selected by these new deciding agents. In doing

so, we believe that this agent may learn to better predict the

decisions that will be made by deciding agents in its future,

thus implicitly learning to predict the intent of other agents in

the team. We perform this maneuver until the agent is finally

able to open a new empty task. However, to minimize waiting

times, we actually record this agent’s ultimate task decision as

if it had been done at the original decision step, allowing the

agent to already start its travel to its new task (as if its future

decision had actually been done back when it first tried to

make a decision but could not). In doing so, our flashforward

process essentially searches for a suitable permutation of the

agents’ decisions that upholds the action selection constraints

used to avoid deadlocks and minimize scattering. This process

is used during training, but at inference time, we only keep

the ability mask and disable the other two components.

C. RL Formulation

1) Observation: The observation of agent ai at time t is

oti = {T t
i ,N t

i ,Mt
i}, which consists of two vectors extracted

from nodes on task graph and agent graph as T t
i , N t

i ,

respectively, and a decision mask Mt
i.

T t
i ∈ R

(km+1)×kg is a vector representing the vertices’

information of all the tasks and the species depot, where

kg = 5+2kb is the feature dimension. Each row indicates the

status of a task (or a depot) as [q̄t
mi

, qmi
, xmi

− xai
, ymi

−
yai

, tmi
, dmi

, fi]. q̄
t
mi

= qmi
− ctL that is the remaining trait

requirements for task initiation. The position is calculated

as relative coordinates w.r.t. the agent. dmi is the predicted

traveling time based on the agent’s moving speed and edge

cost (Euclidean distance), and fi ∈ {0, 1} indicates whether

the task is completed (1 indicates completed). For depots, we

only keep the coordinates while the rest of the values are zero.

N t
i ∈ R

kn×ka is a vector representing the working condition

of all the agents, and ka = kb + 6 is the feature dimension.

Each row presents the condition of an agent aj w.r.t. observing

agent ai as [caj ,d, (xaj − xai , yaj − yai), ej ], where caj is

the trait vector, d ∈ R
1×3 is a vector of agent’s remaining

execution time to complete its current task, remaining travel

time to arrive at its next task, and waiting time from its arrival

until the current task is in-progress. The binary value ej ∈
{0, 1} shows whether the agent’s current task is open (0) or

in-progress (1).

Mt
i is a binary mask indicating whether the task is open

for the agent, obeying the decision constraint.

2) Action: Each time an agent completes its current task,

our decentralized neural network, parameterized by θ, outputs

a stochastic policy over all tasks based on the agent’s ob-

servation as pθ (a | oti) = pθ (τt = j | oti), where j ∈ {i}km
0

represents the indices of tasks (1, . . . , km) and the agent’s

depot (0). Completed/in-progress tasks and non-open tasks due

to our CFM are filtered by the mask M t
i . During training, we

sample agent action from pθ (a | oti) following a multinomial

probability distribution. For inference, we both tried to select

actions greedily (argmax over this probability distribution), or

at weighted-random (Boltzmann).
3) Reward: Our objective is to minimize the makespan,

ensuring that agents cooperatively complete all tasks and

return to their species depots as quickly as possible. We define

a sparse reward calculated at the end of the training episode as

R(Φ) = −T−W , where T is the makespan and W represents

the average ability redundancy for tasks as

W =
1

km

kn∑
i=1

wi, (1)

wi =

⎧⎨
⎩

∑kb
j=1 abs(c

(j)
L −q(j)

mi
)

∑kb
j=1 q

(j)
mi

, if cL � qmi

η, otherwise,

(2)

where η is user-defined value, in practice, we set η = 10 to

keep T and W on the same scale. During training, a time-out

Tmax is set to end deadlock scenarios.

D. Policy Network

We design an attention-based network to build the con-

text about the entire instance from a global perspective,

enabling agents to make informed decisions and learn a

policy πθ (a | oti) shared among all heterogeneous agents. The

network follows an encoder-decoder structure as shown in Fig

2. The encoder builds contexts by aggregating the working

conditions (e.g., positions, coalitions) of all agents and the

status of all tasks (e.g., remaining requirements, distance).

In this way, agents can implicitly exchange their intents

and reason about dependencies among different tasks (and

coalitions). The decoder then fuses the learned representations

from the encoder to distill salient features and evaluate the

future impacts and benefits of choosing each task. Finally, it

outputs a probability distribution over all tasks. Our attention-

based network could handle any number of agents and tasks

during inference, providing flexibility and scalability in real-

life deployments or even dynamic environments.
1) Multi-head attention with gated unit: Here we introduce

the fundamental component of our network, the attention

layer [27] with a gated mechanism [28] to learn better rep-

resentations. We take a set of input queries hq and key-value

pairs hk,v , then calculate an attention vector α with three

learnable matrices WQ,WK ,WV as

Q,K, V = WQhq,WKhk,v,WV hk,v, (3)

αz = Attention(Qz,Kz, Vz) (4)

= Softmax(QzK
T
z /

√
d)Vz, (5)

MHA
(
hq, hk,v

)
= Concat (α1, α2, . . . , αZ)W

O, (6)

In multi-head attention, each head computes its own attention

vector, then the outputs from all heads are concatenated and
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Fig. 2. Network structure used in this work. It follows an encoder-decoder structure where the status of agents and tasks such as trait vectors and trait
requirements are first processed by a group of agent encoder, task encoder and cross encoder to build context and generate glimpses of the whole system.
These features are then used by the decoder to output a policy (i.e., a probability distribution over all tasks).

multiplied with another learnable matrix, WO, to calculate the

final representation. Z is the number of heads (in practice, Z =
8). Finally, the output vector is passed to layer normalization

and a forward layer with a gated linear unit.

2) Encoder: Our encoder consists of a task encoder, an

agent encoder, and cross encoders. In the task encoder, node

features T t
i are first passed to a linear projection layer that

maps them to d-dimension embeddings hT (in practice, d =
128). A multi-head self-attention layer then encodes these

embeddings h′
T = MHA(hT , hT ) to build the context of all

the tasks and learn the dependencies among them. In addition,

we obtain a global glimpse h̄T to capture all the information

by taking the average of node embeddings. Similarly, for the

agent encoder, the vector features of agents N t
i are processed

the same way as task encoder to generate the context of all

agents h′
N and a global agent glimpse h̄N . These encoding

contexts are then fed into two encoders to build enhanced

agent-task context h′
NT = MHA(h′

N , h′
T ) and task-agent

context h′
T N = MHA(h′

T , h
′
N ), where task/agent encodings

serve as queries and key-value pairs respectively.

3) Decoder: In the decoder, we first extract the feature of

agent that is currently making decision from agent-task context

h′
NT . We concatenate this feature with the global glimpses of

tasks and agents to build an agent current state. It is then

passed to a linear layer to remain the same dimension d, as

hai
= MLP(Concat(h′

NT
(i)
, h̄N , h̄T )). This agent current

state then goes through another (two layers of) multi-head

attention with h′
T N and a binary mask Mi to enhance the

representation as h′
ai

= MHA(hai , h
′
T N | Mi). Finally, this

enhanced representation is used to calculate an attention score

over h′
T N , which is the probability of selecting each task.

E. Training

We train our policy using the REINFORCE [29] algorithm

with a baseline reward inspired by POMO [30]. In combinato-

rial optimization problems, the reward is often a joint reward

and sparse, making it challenging to stabilize the training. By

relying on reinforcement learning with baseline rewards, we

enable the agents to learn the policy through self-comparison.

Different from POMO, where they choose different first action

in traveling salesman problem and calculate an average reward

for all the solutions, we here run the same episode multiple

times and calculate the average reward. Because we sample

actions during training, our policy will generate various tra-

jectories for better exploration when the policy entropy is high,

and then stabilize when the policy finally converges. We run

an episode β times, and the advantages are calculated as

advi = R(Φ)i −
1

β

β∑
i=1

R(Φ)i. (7)

In practice, we set β = 10, which we found high enough

to help stabilize the training by mitigating the impact of

low-quality experiences from episodes with deadlocks. This

way, for each run of an episode, agents can learn according

to how much their actions performed better or worse than

expected from the advantage value. The gradient of the final

loss function is defined as:

∇θL = −Epθ(Φ)

[
adv · ∇θ log pθ (Φ) | ot

]
. (8)

V. EXPERIMENTS

In this section, we detail our experimental setup for both

training and testing. We conduct a series of experiments

across different scenarios, ranging from small- to large-scale

problems, single- to multi-skill agent, and simple to com-

plex coalition requirements. We compare our method with

an MIP-based method and heuristic methods to evaluate the

performance in terms of solution quality, generalizability, and

computation time. We analyze the performance of different

methods and discuss our advantages.

A. Training Setup

We train our policy on randomly generated instances for

each episode. For each instance, we sample a number of tasks

ranging from 15 to 50 and a number of species ranging from

3 to 5. The positions of these tasks and species depots are

uniformly generated in [0, 1]× [0, 1] domain. Each task has an

execution duration sampled from [0, 5] and a 1×5 trait require-

ment, where we have 5 unique skills and the requirement of

each skill is an integer ranging from 0 to 2. For each species,

there are 3 to 5 agents with the same trait vector, where each

skill is represented by a binary value (0 or 1). This setup can be

adapted to different real deployments by normalizing agents’

abilities. To simplify the agents’ kinematics, we assume all

agents move at a constant speed of v = 0.2. Although the

total number of skills is fixed at 5 due to the network design,



TABLE I
TESTING RESULTS FOR SA-BT SCENARIOS

SA-BT Method Success
Rate Makespan AWT Computation

Time (s)

kn = 9
ks = 3
km = 20
kb = 3

TACO 100% 35.068 (± 5.857) 9.679 (± 4.905) 66.59

SAS 100% 27.408 (± 3.918) 4.286 (± 1.78) 25.60

CTAS-D 100% 23.658 (± 2.918) 2.519 (± 1.068) 600

Greedy 100% 32.733 (± 3.371) 5.377 (± 1.572) 0.11
RL(g.) 100% 29.002 (± 3.073) 4.125 (± 1.414) 0.43

RL(s.10) 100% 27.193 (± 2.715) 3.687 (± 1.333) 4.33

kn = 25
ks = 5
km = 20
kb = 5

TACO 100% 28.86 (± 5.561) 9.327 (± 4.385) 120.87

SAS 100% 27.329 (± 4.686) 5.686 (± 1.982) 40.37

CTAS-D 100% 16.488 (± 1.744) 1.988 (± 0.519) 600

Greedy 100% 21.879 (± 2.827) 3.163 (± 1.196) 0.34
RL(g.) 100% 20.877 (± 2.467) 2.74 (± 0.954) 0.68

RL(s.10) 100% 20.071 (± 2.219) 2.539 (± 0.767) 6.54

kn = 25
ks = 5
km = 50
kb = 5

TACO 100% 63.923 (± 7.051) 33.727 (± 5.949) 527.26

SAS 100% 56.523 (± 7.221) 21.898 (± 4.973) 169.6

CTAS-D 4% \ \ 3600

Greedy 100% 43.964 (± 3.749) 8.771 (± 1.573) 0.402
RL(g.) 100% 36.996 (± 3.1) 6.496 (± 0.952) 1.52

RL(s.10) 100% 35.477 (± 2.842) 6.042 (± 1.053) 13.45

kn = 50
ks = 5
km = 50
kb = 5

TACO 100% 38.244 (± 7.029) 15.858 (± 6.704) 909.67

SAS 100% 52.682 (± 5.738) 13.469 (± 3.503) 201.41

CTAS-D 96% 18.649 (± 1.922) 2.479 (± 0.54) 3600

Greedy 100% 27.153 (± 2.317) 3.406 (± 0.622) 0.74
RL(g.) 100% 24.233 (± 2.071) 2.703 (± 0.494) 2.03

RL(s.10) 100% 22.871 (± 1.45) 2.703 (± 0.515) 19.14

Note: the bold indicates the best performance and the underline highlights the second

best performance. The other tables are showed in the same way.

we can still set unused skills as zero, thus generalizing to

scenarios where the number of unique skills is fewer than

5. A timeout Tmax = 100 is set to terminate deadlocks. We

train our policy using the Adam optimizer with a learning rate

r = 10−5 that decays by 0.98 every 2000 episodes. To enable

batch training, we apply zero-padding to inputs and train it

based on maximum input size.

B. Comparison Results

We evaluate our trained model against other baselines on

three scenarios: i) MA-AT ii) SA-AT iii) SA-BT. MA indicates

the use of multi-skill agents possessing more than one skill,

whereas SA involves single-skill agents, i.e., whose trait vector

is one-hot. Additive tasks (AT) have cumulative requirements,

where trait vectors of all agents in the coalition are element-

wise summed to be compared to the task trait requirement,

e.g., cooperative heavy payloads carrying, where the individual

payload capacity of multiple agents can be summed to confirm

they can carry a heavy load together. On the other hand,

tasks have binary requirements (BT), meaning they can be

successfully completed as long as each required ability is met

by at least one agent in the coalition. We train our policy

only on MA-AT scenarios, as the other instances could be

seen as a subclass of MA-AT problems. In all experiments,

we use the same trained model without further constraints or

fine-tuning. To evaluate the effectiveness of our method, we

compare our approach with CTAS-D [12], SAS [7], TACO [7]

and our greedy heuristic.

CTAS-D relies on Gurobi to solve an MILP instance to

find exact solutions. It first optimizes the flow of each species

to complete all tasks, and then rounds the species flow to

integers and determines the route of each agent. In our tests,

we adapt the objective function to minimize the makespan and

set an upper bound time for optimization of each instance. SAS

and TACO are two heuristic methods based on ACO, where

each ant represents a swarm coalition (SAS) or an individual

TABLE II
TESTING RESULTS FOR SA-AT SCENARIOS

SA-AT Method Success
Rate Makespan AWT Computation

Time (s)
kn = 9
ks = 3
km = 20
kb = 3

CTAS-D 40% 47.166 (± 11.686) 13.414 (± 7.247) 600

Greedy 100% 64.449 (± 11.525) 22.895 (± 7.171) 0.07
RL(g.) 100% 54.738 (± 10.073) 18.214 (± 5.915) 0.34

RL(s.10) 100% 50.648 (± 8.616) 14.532 (± 4.492) 3.37

kn = 15
ks = 5
km = 20
kb = 5

CTAS-D 34% 58.665 (± 7.82) 21.045 (± 6.687) 1800

Greedy 100% 74.179 (± 9.658) 31.493 (± 6.666) 0.15
RL(g.) 91% 62.987 (± 11.596) 25.427 (± 12.836) 1.16

RL(s.10) 100% 57.454 (± 6.681) 19.689 (± 4.025) 11.06

kn = 25
ks = 5
km = 20
kb = 5

CTAS-D 68% 32.406 (± 8.347) 8.986 (± 5.59) 600

Greedy 100% 41.121 (± 4.421) 12.22 (± 2.627) 0.218
RL(g.) 100% 36.091 (± 3.343) 9.107 (± 2.187) 1.09

RL(s.10) 100% 33.439 (± 3.498) 7.476 (± 1.686) 10.2

kn = 50
ks = 5
km = 50
kb = 5

CTAS-D 0% \ \ 3600

Greedy 100% 46.269 (± 3.669) 10.433 (± 1.373) 1.185
RL(g.) 100% 39.427 (± 3.124) 7.741 (± 1.452) 3.08

RL(s.10) 100% 37.664 (± 2.798) 7.253 (± 1.196) 29.8

TABLE III
TESTING RESULTS FOR MA-AT SCENARIOS

MA-AT Method Success
Rate Makespan AWT Ability

Redundancy
Computation

Time (s)
kn = 9
ks = 3
km = 20
kb = 3

CTAS-D 28% 42.244 (± 7.541) 5.003 (± 3.433) 1.842 (± 0.084) 600

Greedy 100% 64.529 (± 13.293) 20.459 (± 8.546) 2.116 (± 0.254) 0.08
RL(g.) 100% 54.066 (± 11.304) 17.472 (± 6.754) 2.007 (± 0.219) 0.3571

RL(s.10) 100% 49.337 (± 11.126) 14.035 (± 6.378) 1.994 (± 0.214) 3.571

kn = 15
ks = 5
km = 20
kb = 5

CTAS-D 36% 35.916 (± 9.082) 5.581 (± 2.364) 1.855 (± 0.171) 1800

Greedy 100% 45.126 (± 11.124) 12.75 (± 8.713) 2.085 (± 0.26) 0.11
RL(g.) 100% 38.495 (± 9.985) 10.917 (± 7.225) 1.942 (± 0.238) 0.86

RL(s.10) 100% 35.911 (± 8.985) 9.021 (± 6.038) 1.919 (± 0.257) 8.4

kn = 25
ks = 5
km = 20
kb = 5

CTAS-D 90% 21.116 (± 5.439) 2.183 (± 0.98) 1.713 (± 0.185) 600

Greedy 100% 29.087 (± 5.828) 5.945 (± 3.523) 2.076 (± 0.25) 0.173
RL(g.) 100% 25.625 (± 5.006) 4.727 (± 2.894) 1.943 (± 0.25) 0.76

RL(s.10) 100% 23.674 (± 4.382) 4.044 (± 2.483) 1.903 (± 0.236) 7.6

kn = 25
ks = 5
km = 50
kb = 5

CTAS-D 0% \ \ \ 3600

Greedy 100% 63.214 (± 14.069) 15.986 (± 9.778) 2.08 (± 0.244) 0.529
RL(g.) 100% 50.158 (± 11.886) 12.712 (± 7.893) 1.911 (± 0.229) 1.634

RL(s.10) 100% 46.983 (± 10.711) 11.555 (± 7.12) 1.894 (± 0.232) 16.34

kn = 50
ks = 5
km = 50
kb = 5

CTAS-D 14% 39.762 (± 5.752) 0.614 (± 0.253) 2.042 (± 0.099) 3600

Greedy 100% 35.171 (± 5.701) 5.965 (± 2.827) 2.11 (± 0.254) 0.983
RL(g.) 100% 29.624 (± 5.011) 4.732 (± 2.426) 1.917 (± 0.234) 2.343

RL(s.10) 100% 27.98 (± 4.581) 4.788 (± 2.698) 1.914 (± 0.236) 23.43

agent (TACO), where pheromone trails are iteratively updated

to improve the plan. Importantly, we note that SAS and

TACO can only handle BT type problems. In addition, we

implement a greedy heuristic algorithm with the same decision

constraints as Section IV-B, where agents select the closest

task to which they can contribute based on their trait vectors.

For our RL method, we develop two variants: RL(g.), where

agents greedily choose actions based on the learned policy

(yielding a single solution), and RL(s.10), where we run each

instance 10 times with Boltzmann action selection, and select

the solution with lowest makespan among those.

We conduct experiments on unseen, randomly generated

testing sets for each scenarios, with each set containing 50

instances. We report the success rate, average makespan,

average waiting time (AWT), computation time, and ability

redundancy in Table I-III. The success rate is the percentage

of instances where the solver finds a feasible solution within

the time constraint. AWT represents the average duration each

agent wastes on waiting for others at tasks. Computation cost is

the time to solve each instance. Ability redundancy is defined

as Equation 1. Except for success rate, for all metrics, lower

values are better. The reported average metrics only considers
solvable instances. We also define a task-to-agent ratio kn

km
,

which indicates the likelihood of deadlocks and difficulty of

the problem, as a lower ratio with adequate agents relative to

tasks typically reduces the chances of deadlocks.



TABLE IV
LARGE-SCALE MA-AT SCENARIOS

MA-AT Method Succese
Rate Makespan AWT Computation

Time (s)

km = 200, kn = 50
ks = 5, kb = 5

Greedy 100.00% 114.98 (± 24.951) 54.075 (± 12.532) 9.94
RL(g.) 100.00% 82.698 ± 21.279 36.564 ± 9.727 7.32

RL(s.10) 100.00% 81.213 (± 20.657) 36.11 (± 9.401) 75.2

km = 500, kn = 150
ks = 10, kb = 5

Greedy 100.00% 86.776 (± 9.513) 11.588 (± 2.791) 62.6

RL(g.) 100.00% 56.728 (± 8.694) 8.694 (± 4.536) 55.4
RL(s.10) 100.00% 56.093 (± 8.802) 8.934 (± 4.553) 560.2

km = 500, kn = 150
ks = 5, kb = 5

Greedy 100.00% 97.735 (± 20.005) 14.08 (± 4.786) 109.62

RL(g.) 100.00% 67.35 ± 16.745 15.673 ± 10.816 54.6
RL(s.10) 100.00% 66.199 (± 16.475) 15.655 (± 10.784) 560.5

C. Analysis

1) Solution quality: For SA-BT scenario, each task requires

1 to 5 skills, so completing the task only requires small num-

bers of agents to cooperate (smaller coalitions). The results

are presented in Table I. In this scenario, CTAS-D generally

performs the best given sufficient optimization time (10 mins

to 1 hour). Our method ranks second among all the baselines,

even though not being specifically trained for this scenario. We

can find solutions with an optimality gap of the makespan less

than 23% compared to exact solutions, even in the worst case,

while being much faster and upholding a 100% success rate

across all testing sets. Although CTAS-D can yield exact/near-

optimal solutions, the probability of finding such solutions for

large-scale problems with high task-to-agent ratios within the

time constraints decreases significantly. On the other hand,

both TACO and SAS can only generate low-quality solutions.

Table II shows results for SA-AT instances, scenarios re-

quiring the most complex type of cooperation, which cannot

be solved by SAS nor TACO. Here, task requirements are

sampled in the same way during training (see Section V-A), but

agents are single-skill. Our method overall outperforms CTAS-

D in terms of makespan and success rate. Although the results

of CTAS-D exclude timed-out instances, naturally giving it

an advantage in terms of average performance reported, our

method consistently achieves significantly higher success rate

and yields high-quality solutions with lower variance.

We present MA-AT results in Table III. These scenarios

involve further finding combinations of agents to satisfy task

requirements while keeping a low ability redundancy. Our

method significantly outperforms the Greedy baseline and is

on par with CTAS-D in terms of makespan and ability redun-

dancy. We maintain our 100% success rate over all instances,

whereas CTAS-D shows a huge decline in performance as the

task-to-agent ratio increases. Delving deeper into these results,

we noticed CTAS-D relies heavily on using agents with many

abilities and often leaves other agents idle, which explains

its lower AWT. However, when such omnipotent robots are

unavailable, CTAS-D struggles to find any solution within

1 hour. In contrast, our method, operating within seconds,

can efficiently let agents form dynamic coalitions and keep

a relatively low ability redundancy.

2) Generalizability: Even though our policy is trained

on small-scale instances, once trained, it can generalize to

different scenarios with any number of tasks and agents thanks

to our network design. We also evaluate its scalability to very

large-scale problems with up to 150 agents and 500 tasks,

which are difficult, if not impossible, for conventional methods

to solve. The results in Table IV and III indicate a near-linear

Fig. 3. Makespan of the current solution throughout CTAS-D’s optimization
process, compared to our final solutions, in MA-AT scenarios with 25 agents
(5 species) and 20 tasks (left) and 30 tasks (right). Our approach quickly yields
high-performance solutions (see legend), which remain drastically better than
early solutions obtained by CTAS-D. A long refinement time is needed for
CTAS-D’s solution to finally slightly outperform us.

relationship between the task-to-agent ratio and the makespan,

indicating that our method can efficiently use the available

agents to distribute the workload and maintain near-constant

efficiency.

3) Computation Time: From our results, our RL-based

approach is the fastest among all the methods (even though

CTAS-D is implemented in C++, while our method was

written in Python). The time taken by each of our agents to

make one decision is determined by the size of inputs, which

linearly increases with the problem scale. However, CTAS-

D faces an exponential increase in computation time. As a

result, our method generates solutions at least two orders of

magnitude faster than CTAS-D, and at least ten times faster

than heuristic ACO-based methods. Although CTAS-D can

finally slightly outperform us given long enough time budgets,

we conducted a case study in MA-AT scenarios with 25 agents

and 20 or 30 tasks to illustrate how costly it is for CTAS-D

to achieve similar performance as ours, as shown in Fig. 3.

4) Discussion: Across all these different results, we ob-

serve several key advantages of our method. First, although

our approach works in a decentralized manner, it yields high-

quality solutions comparable to those generated by centralized

solvers, while our framework can easily scale to larger-scale

instances. Second, complicated cooperation often leads to

frequent deadlocks that often prevent conventional methods

from finding good solutions, while our agents, using our CFM,

can proactively avoid deadlocks by making informed, non-

myopic decisions, selecting tasks with long-term benefits, and

balancing traveling, working, and waiting times. Finally, our

method can generalize to various scenarios and yield com-

parable results without further tuning. We believe our rapid

response and excellent generalization make our method ideal

for real-life, time-critical applications where long optimization

times are infeasible, and frequent replanning is necessary to

address unexpected events.

D. Experimental Validation

We validate our method in an indoor mockup of a distributed

search mission (Fig. 4). There, we deploy six Crazyflies

drones, separated into two species flying at two different

altitudes, to execute six different tasks using the swarm

framework from [31]. This demonstration shows our drones

can sequentially visit all spatially distributed tasks (cones),

dynamically forming coalitions based on task requirements,

and finally returning back to their initial depot.



Fig. 4. Aerial robotic validation on a cooperative search mission, where
agents of different species (shown as flying at different altitudes) dynamically
form/disband coalitions to cooperatively search specific locations (tasks).

VI. CONCLUSION

In this work, we proposed a decentralized framework that

leverages reactive sequential decision-making and distributed

multi-agent RL to efficiently solve heterogeneous MRTA prob-

lems, with a specific focus on problems requiring complex

coalition formation and tight cooperation. To tackle the chal-

lenge of frequent deadlock formation during early training, as

well as complex cooperation learning, we introduced a novel

constrained flashforward mechanism, which enables agents

to efficiently explore rich collective behaviors and predict

other’s intent while keeping the learned policy decentralized,

without significant computational overhead. Our evaluation

results demonstrate that our method exhibits excellent general-

izability across various scales and types of scenarios, without

the need for fine-tuning. In particular, it closely matches the

performance of exact solutions on smaller-scale, less complex

instances, and significantly outperforms heuristic and MIP-

based methods on larger-scale problems, while remaining at

least 100 times faster!

Our future work will extend this framework to better handle

additional constraints, such as tasks with specific time win-

dows for completion, or with precedence constraints. There,

we believe a learning-based approach can more effectively

integrate such constraints into the agents’ decentralized, co-

operative decision-making, leading to improved long-term

efficiency and easier real-life deployments.
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