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Abstract— The Multi-Agent Path Finding (MAPF) problem
aims to determine the shortest and collision-free paths for
multiple agents in a known, potentially obstacle-ridden envi-
ronment. It is the core challenge for robotic deployments in
large-scale logistics and transportation. Decentralized learning-
based approaches have shown great potential for addressing
the MAPF problems, offering more reactive and scalable solu-
tions. However, existing learning-based MAPF methods usually
rely on agents making decisions based on a limited field of
view (FOV), resulting in short-sighted policies and inefficient
cooperation in complex scenarios. There, a critical challenge is
to achieve consensus on potential movements between agents
based on limited observations and communications. To tackle
this challenge, we introduce a new framework that applies sheaf
theory to decentralized deep reinforcement learning, enabling
agents to learn geometric cross-dependencies between each
other through local consensus and utilize them for tightly coop-
erative decision-making. In particular, sheaf theory provides a
mathematical proof of conditions for achieving global consensus
through local observation. Inspired by this, we incorporate a
neural network to approximately model the consensus in latent
space based on sheaf theory and train it through self-supervised
learning. During the task, in addition to normal features
for MAPF as in previous works, each agent distributedly
reasons about a learned consensus feature, leading to efficient
cooperation on pathfinding and collision avoidance. As a result,
our proposed method demonstrates significant improvements
over state-of-the-art learning-based MAPF planners, especially
in relatively large and complex scenarios, demonstrating its
superiority over baselines in various simulations and real-world
robot experiments.

I. INTRODUCTION

As intelligent robots advance, the application of large-
scale Multi-Agent Path Finding (MAPF) has become in-
creasingly important in scenarios such as warehouse automa-
tion, airport management, and robotic fleets [1]–[4]. MAPF
involves planning collision-free paths for multiple agents
from their start positions to designated goals. This NP-hard
problem presents significant challenges in scalability and
computational efficiency due to the exponential growth of
complexity with respect to the number of agents.

Recently, the MAPF community has started looking to
Multi-Agent Reinforcement Learning (MARL) to generate
fast and scalable solutions [5]–[7]. Moreover, MARL has
gained significant traction in multi-robot systems, where
agents collaborate in decentralized settings to achieve global
objectives [8]–[13]. These learning-based approaches rely on
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Fig. 1: A sheaf structure in MAPF, where the sheaf structure
provides multilayer views of system structure, stalks collate
high-dimensional data associated with agents, and restric-
tion maps describe complex relationships between different
agents. This sheaf structure aids agents in implementing
consensus.

decentralized planning under partial observability (i.e., each
agent only observes its nearby environment, usually 11×11
grid world), reducing computational complexity and enabling
the network to tackle large-scale scenarios effectively [14].
However, the solutions generated by these learning-based
methods are usually suboptimal, since they restrict the
information available to agents, hindering their ability to
avoid local minima and perform delicate joint behaviors. To
improve the performance of learning-based MAPF planners,
recent methods tried to augment the information available to
agents by incorporating expert paths, designing communica-
tion schemes, or providing global map encodings [15]–[17].
These methods show significant improvements over previous
learning-based methods, but there is still a remarkable perfor-
mance gap between learning-based solutions and centralized
optimization-based solutions [18].

This work builds upon the observation that existing
learning-based planners typically lack the ability to let
agents reason about and reach an explicit consensus (i.e.,
a general agreement between agents on their future move-
ments). Such consensus is naturally achieved in centralized
methods, which significantly helps agents avoid blockage
and deadlock, leading to a better success rate and shorter
makespan. However, achieving consensus is non-trivial in
decentralized methods, as each agent makes its decision
individually. As a result, current state-of-the-art learning-



based methods still struggle with dense environments that
require tight cooperation among agents.

To address this problem, we introduce SIGMA, a novel
sheaf-informed MAPF planner that explicitly trains consen-
sus by learning the underlying geometric cross-dependencies
between agents. To the best of our knowledge, this work
is the first learning-based method in MAPF that helps
agents explicitly achieve consensus among themselves. Our
method enhances the capability of the trained planner for
modeling complex potential interactions between agents. In
particular, we integrate sheaf theory [19] into decentral-
ized deep reinforcement learning, enabling agents to learn
consensus/global consistency by modeling geometric cross-
dependencies between each other, where these geometric
cross-dependencies represent the consensus. Sheaf theory
broadens the concept of graphs and studies the global con-
sistency of high dimensional data. Particularly, it provides
mathematical proof of conditions for achieving global con-
sensus through local observation. Inspired by sheaf theory,
we incorporate a neural network to approximately model the
consensus in latent space based on sheaf theory and train
it through self-supervised learning. By doing so, in addition
to normal features for MAPF as in previous works, each
agent distributedly reasons about a learned consensus feature
for consensus-aware path-finding and collision avoidance.
We present exhaustive numerical comparisons with existing
conventional and learning-based planners, which show that
SIGMA outperforms state-of-the-art learning-based MAPF
planners. Notably, SIGMA excels in large-scale scenarios
with larger team sizes, where it significantly surpasses exist-
ing methods.

II. RELATED WORK
A. Deep Reinforcement Learning-based MAPF

Recent years have seen a growing interest in solving
MAPF problems using MARL. The pioneering work, PRI-
MAL, introduced a combination of RL and imitation learning
to plan paths through fully decentralized policies within
a partially observable environment [15]. PRIMAL utilized
the Asynchronous Advantage Actor-Critic algorithm as un-
derlying RL algoritihm, with all agents sharing the same
parameters, while imitation learning was based on behavior
cloning from data generated by the ODrM* planner. This
approach was later extended in PRIMAL2 to address lifelong
MAPF scenarios, incorporating learned conventions to en-
hance cooperation among agents, particularly in highly struc-
tured environments [5]. Subsequent research has explored
communication learning as a promising approach to further
enhance solution quality. For instance, works like MAGAT
and DHC [16], [20] introduced Graph Neural Networks [21]
for communication learning, where each agent is treated
as a node, and decisions are made based on aggregated
information from neighboring agents. DCC, on the other
hand, developed a selective communication strategy that
determines whether an agent’s decision should be influenced
by its neighbors [22]. Moreover, PICO integrated planning
priorities from a classical coupled planner into an ad-hoc

communication topology, aiming to produce policies that
reduce collisions [23]. More recently, SCRIMP introduced a
scalable method where agents learn from small FOV with a
modified transformer for communication, improving perfor-
mance in dense scenarios [6]. Similarly, ALPHA combined
local and global information, using a Graph Transformer
to enhance decision-making and cooperation, addressing the
limitations of limited FOV [17]. However, these methods of-
ten face challenges of scalability and complexity, struggling
to handle instances with agent-dense environments.

B. Sheaf Applications

Sheaf theory addresses the local-to-global problem in
multi-agent systems by allowing the coherent integration of
local data into global structures [24]. Grothendieck then ex-
tended its application in algebraic geometry through scheme
theory, enabling the handling of complex structures like sin-
gularities [25]. In distributed systems, sheaf theory provides a
framework for consensus on complex data structures [26]. In
signal processing, it manages distributed data with complex
dependencies, and in network communication, it optimizes
information flow and reduces communication costs [27].
In network science, sheaves provide enhanced descriptions
of network structures, capturing the nature of relationships
between nodes. Within this framework, opinion dynamics
uses discourse sheaves to model how opinions evolve and
interact within social networks [28]. Additionally, Bodnar
proposed neural sheaf diffusion to learn sheaf laplacians from
lower-order data, providing a novel topological perspective
on heterophily and oversmoothing in GNNs [29]–[31].

III. MAPF AS AN RL PROBLEM

A. MAPF Problem Statement

The classical MAPF problem considers a set of agents
N = {α1, . . . , αn} and an undirected graph G = (V,E),
where V represents the set of vertices and E represents
the set of edges. Each agent i is assigned a distinct start
vertex (ξi ∈ V) and a distinct goal vertex (gi ∈ V).
Time is discretized into uniform steps. At each time step
t = 0, 1, 2, . . ., an agent has the option to either move
to an adjacent vertex or remain stationary at its current
vertex. A path for agent αi is defined as a sequence of
vertices, either adjacent (indicating movement) or identical
(indicating waiting), starting from the agent’s start vertex ξi
and ending at its goal vertex gi. Collisions between agents
are categorized as either vertex collisions, which occur when
two agents αi and αj occupy the same vertex v at the same
time t, or edge collisions, which occur when two agents
αi and αj simultaneously traverse the same edge (u, v) in
opposite directions at time t. A valid solution to the MAPF
problem is a set of collision-free paths, one for each agent.
The optimality of the solution is typically evaluated by the
sum of the arrival times of all agents at their respective goal
vertices.
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Fig. 2: Network structure of SIGMA. The observation encoder encodes observations in stalks (orange), the section FC learns
restriction maps (green), and M(s) is included in the advantage function to enhance action evaluation. A global section loss
(red) is then integrated into the network updating to align the policy with the sheaf structure.

B. RL Environment Setup

Remaining consistent with the standard MAPF problem,
we use the following setup: the map is a 2D discrete 4-
connectivity grid world, where each grid is a vertex con-
nected to its neighbors by edges, and agents can move to the
free cell adjacent to their location or stay idle at each time
step. An episode terminates when all agents are on their goals
at the end of a time step (success) or when the number of
time steps reaches the pre-defined limit (failure). We utilize
the room-like map generator proposed by ALPHA. The
generated room maps contain corridors of varying widths,
which closely resemble real offices, warehouses, and other
environments. Unlike the temporal impact of loose obstacles
in random maps, continuous obstacles in such highly struc-
tured maps may significantly affect current decision-making
even across substantial distances.

1) Observation: In our settings, each agent can only
partially observe the environment limited by the size of the
FOV ℓ×ℓ, where ℓ is smaller than the total environment size
m. To ensure the agent remains centered within its FOV, ℓ is
selected as an odd number. The observation data is organized
into two primary channels: the first channel is a binary matrix
that represents obstacles within the FOV, and the second
channel is another binary matrix that indicates the positions
of other agents when they fall within the FOV. Additionally,
the input to our model includes four heuristic channels, each
corresponding to one of the possible movement directions:
Up, Down, Left, and Right. These heuristic channels share
the same dimensions as the FOV, and each cell is marked
as 1 if taking the associated action would move the agent
closer to its goal from that location. By incorporating these
heuristic channels, the agent can infer the best direction to
move without the need to explicitly include the goal location
in the input [16].

2) Action Space: In our grid-world environment, agents
operate within a discrete action space. At each time step,
an agent can choose to move to one of the adjacent grid
cells or remain stationary. We do not consider diagonal
movements thus each agent has a total of five possible

actions. During training or execution, agents may occasion-
ally select invalid actions, such as moving into an obstacle
or causing a collision with another agent. To handle such
situations, invalid actions are not filtered out; instead, if an
invalid action occurs, the agent and any involved agents are
recursively returned to their previous states until no collisions
remain [16].

3) Reward: We follow the DHC setup [16], assigning the
same penalty for each agent’s movement and for staying
away from the goal. The same reward setting ensures a fairer
comparison. Our reward structure is shown in Table I.

TABLE I: Reward Structure

Actions Reward
Move (Up/Down/Left/Right) −0.075

Stay (on goal, away goal) 0,−0.075
Collision (obstacle/agents) −0.5

Finish 3

IV. LEARNING TECHNIQUES

A. Dynamic Agent Graph

We define a dynamic agent graph G = (V,E) to represent
the relationships between agents based on their FOV, as
illustrated in Figure 3. Nodes V represent n agent αi, i =
(1, 2, ..., n). An edge e ∈ E is established between two
agents if they are within each other’s FOV, indicating that
they can potentially interact or need to consider each other’s
presence while planning their paths. This dynamic graph
reflects the changing visibility and proximity of agents as
they move through the environment, making it crucial for
coordinating their actions and avoiding collisions.

B. Cellular Sheaf in MAPF

A cellular sheaf is an algebraic-topological structure as-
sociated with a graph that attaches spaces of data to nodes
and edges [32]. To be precise, a cellular sheaf (G,F) on a
dynamic agent graph G = (V,E) consists of:

• A vector space F(v) for each v ∈ V ,
• A vector space F(e) for each e ∈ E,



Fig. 3: Dynamic agent graph shows dynamic connections
among homogeneous agents, with edges representing mutual
visibility within each other’s FOV.

• A linear map Fv⊴e : F(v) → F(e) for each incident
node-edge pair v ⊴ e.

According to the sheaf theory, vector spaces is termed
as stalks and the linear map as restriction map [33]. The
stalk originates from the analogy where a sheaf in the
agricultural sense is a collection of stalks of grain bound
together by twine; similarly, in mathematical terminology, a
cellular sheaf on a graph is a collection of stalks of data
bound together by restriction maps.

Here we focus on the concept of consensus and help
readers to understand how it works in MAPF. Agents achieve
global consensus via local observations, where the local ob-
servations of agents are in node stalks, and the model depen-
dences between agents are in edge stalks. In our case, agents
reach consensus when their independent observations map to
consistent features via learned restriction maps. Specifically,
if for any two agents v and u with observation vectors xv and
xu agree on the edge e, the condition Fv⊴exv = Fu⊴exu

should be satisfied. Here, the subspace of direct sum of
all the node stalks that satisfy this condition is referred to
as the space of global sections Γ(G,F) [34]. We regard
elements in the space of global sections as representatives of
consensus, where the entire agents exhibit no-contradiction
behavior in how to map the observations of agents across the
graph to global sections. In our work, our target is to utilize
self-supervising learning to train a neural networ to model
the space of global sections, achieving consensus to avoid
congestion and crowding among agents.

C. Sheaf-Informed DQN

As shown in Figure 2, we use a observation encoder to
encode the observations into stalks (orange). Since MAPF
agents are homogeneous, meaning they have identical char-
acteristics, their corresponding restriction maps are also
identical. Thus, we denote the same restriction maps (green)
for all agents as M , which is learned through the section
FC’s training process. Additionally, we incorporate the global
section loss(red) directly into the network updating, ensuring
that the learned policy respects the underlying sheaf structure

and maintains consistency across the observation space.
DQN learns the action value function using neural net-

works. To incorporate the advantage and value functions,
we can define the advantage function A(s, a) and the value
function V (s), where Q(s, a) = V (s) +A(s, a). The agents
access the current states st ∈ S and selects an action at ∈ A
according to a policy π at each time step t. The agent’s
objective is to maximize the expectation of the discounted
total return Rt = rt + γrt+1 + γ2rt+2 + . . ., where rt is the
reward received at time t.

Q-Learning utilizes an action value function for policy π
as Qπ(s, a) = E[Rt | st = s, at = a] and can be recursively
defined by Qπ(s, a) = Es′ [r + γEa′∼π[Q

π(s′, a′)]] The
optimal action value, Q∗(s, a) = maxπ Q

π(s, a), satis-
fies the Bellman optimality equation Q∗(s, a) = Es′ [r +
γmaxa′ Q∗(s′, a′) | s, a]. The optimal policy is trained by
minimizing the loss LQ. Here, the parameters of the target
network are updated periodically. In partially observable
environments, agents generally need to condition on an state-
action history LQ = E(s,a,r,s′)[(Q(s, a) − y)2], where y =
r + γmaxa′ Q(s′, a′).

Fig. 4: The observation vectors o1 and o2 of neighboring
agents α1 and α2 are encoded into stalks F(α1) and F(α2),
which are mapped onto the stalk of edge e between them via
restriction maps M .

As illustrated in Figure 4, o1 and o2 are the observation
vectors of neighboring agents α1 and α2, and their corre-
sponding stalks F(α1) and F(α2) should map to the same
stalk F(e) on the edge e via the restriction maps M , and
they should match on the edge F(e) by definition of global
sections, i.e., M(o1) = M(o2). To satisfy these conditions
and measure how close the current observations are to being
within the space of global sections, we designed a self-
supervise global section loss lsec. Specifically, lα1

sec can be
expressed as follows:

lα1
sec =

∑
αi in α1 FOV

|M (oi)−M (o1)|2 (1)

lsec =
1

n

n∑
i=1

lαi
sec (2)

Where oi represents the observation vectors of agent αi

within the FOV of agent α1, and M denotes the restriction
map, n is the number of agents. The function lsec sums the
mapping discrepancies between stalks, and by minimizing



TABLE II: Experimental Results. The symbol ”↑” indicates that a higher value is desirable, and vice versa.

Method EL↓ AR↑ SR↑

20 × 20 room-liked environment with 4, 8, 16, 32, 64, 128 agents

ODrM* 30.58 43.19 97.25 292.93 512.00 512.00 100% 98.00% 88.00% 47.00% 0.00% 0.00% 100% 98% 88% 47% 0% 0%
PRIMAL 201.32 275.93 439.95 506.83 512.00 512.00 93.50% 90.88% 88.63% 81.72% 66.79% 35.74% 79% 67% 30% 2% 0% 0%
MAPPER 79.81 101.05 246.69 427.33 512.00 512.00 98.75% 97.53% 95.75% 89.71% 53.92% 6.96% 97% 97% 82% 41% 0% 0%

DHC 45.50 73.86 175.22 354.43 509.69 512.00 99.00% 98.62% 96.56% 90.69% 69.70% 20.09% 98% 93% 77% 45% 1% 0%
DCC 45.73 47.65 129.96 262.21 506.89 - 99.00% 99.50% 98.56% 95.91% 73.55% - 97% 98% 86% 71% 4% -

SCRIMP 43.42 61.56 186.34 214.32 488.98 – 99.25% 99.37% 98.87% 97.53% 82.32% – 98% 96% 93% 75% 15% –
ALPHA 37.39 52.26 120.65 310.21 503.87 512.00 100% 100% 99.75% 97.69% 70.12% 25.71% 100% 100% 96% 78% 8% 0%

SIGMA 38.04 40.54 66.59 136.56 398.26 512.00 100% 100% 99.12% 96.75% 61.62% 8.46% 100% 100% 98% 92% 39% 0%

40 × 40 room-like environment with 4, 8, 16, 32, 64, 128 agents

ODrM* 56.73 69.34 91.89 146.88 375.37 512.00 100% 100% 97.00% 85.00% 32.00% 0.00% 100% 100% 97% 85% 32% 0%
PRIMAL 285.55 384.93 463.86 492.82 511.80 512.00 91.00% 87.62% 85.56% 82.69% 73.14% 61.71% 73% 47% 23% 11% 1% 0%
MAPPER 104.82 157.12 218.35 348.95 491.58 512.00 100% 99.37% 98.00% 93.71% 76.60% 51.02% 100% 96% 91% 66% 16% 0%

DHC 104.19 127.78 188.62 263.81 427.02 512.00 97.75% 98.00% 97.88% 95.94% 91.17% 72.53% 92% 91% 80% 65% 28% 0%
DCC 63.25 102.40 142.88 201.43 338.16 - 99.75% 99.25% 99.12% 98.72% 96.47% - 99% 95% 89% 85% 58% -

SCRIMP 58.53 91.84 116.05 183.54 396.93 484.76 100% 99.62% 99.56% 99.21% 94.10% 85.09% 100% 97% 95% 84% 42% 12%
ALPHA 64.04 88.75 140.96 206.85 392.23 506.48 100% 100% 99.75% 99.34% 93.46% 73.99% 100% 100% 97% 93% 60% 7%

SIGMA 57.23 77.10 88.33 128.70 223.73 380.48 100% 100% 100% 99.56% 98.50% 92.11% 100% 100% 100% 95% 89% 69%

60 × 60 room-liked environment with 4, 8, 16, 32, 64, 128 agents

ODrM* 84.71 98.43 106.46 163.53 228.95 457.17 100% 100% 99.00% 88.00% 72.00% 14.00% 100% 100% 99% 88% 72% 14%
PRIMAL 363.45 465.35 495.85 508.17 512.00 512.00 84.75% 78.37% 79.75% 73.62% 71.51% 62.83% 54% 25% 11% 3% 0% 0%
MAPPER 177.61 241.31 280.69 388.55 490.02 512.00 99.50% 97.75% 98.31% 93.87% 85.96% 62.47% 97% 89% 90% 61% 17% 0%

DHC 131.59 203.71 186.66 323.19 406.40 496.70 97.75% 96.75% 98.88% 95.16% 93.30% 87.79% 91% 77% 86% 54% 35% 7%
DCC 113.64 145.24 170.38 268.39 331.01 - 98.25% 99.00% 98.88% 97.75% 95.50% - 95% 93% 89% 69% 58% -

SCRIMP 106.79 166.37 125.50 211.03 421.65 498.72 99.50% 99.25% 99.61% 98.73% 96.79% 88.08% 98% 95% 97% 81% 31% 8%
ALPHA 110.82 158.59 173.02 263.74 357.17 485.23 99.50% 99.25% 99.75% 99.03% 97.91% 89.16% 98% 97% 97% 86% 67% 25%

SIGMA 91.02 103.63 109.53 147.76 187.96 332.35 100% 100% 100% 100% 99.78% 98.52% 100% 100% 100% 98% 96% 80%

lsec, we ensure that the global section conditions are sat-
isfied. When training converges, the global section loss is
minimized, fulfilling the conditions set by sheaf theory, and
ensuring that the agents achieve consensus.

We incorporate lsec into the network updating to assist
the agent in making decisions that adhere to the section
conditions. As a result, the learned consensus among agents
should be considered during learning the advantage value,
we include M(s) in the advantage function to enable better
evaluation of actions by the agents. The resulting Q-function
in SIGMA is expressed as follows:

Q(s, a) = Vθ1(s) +Aθ2(s
′, a)− 1

|A|
∑
a′∈A

Aθ2(s
′, a′) (3)

s′ = [M(s), s] (4)

LSIGMA = LQ + Λ · lsec (5)

Here, Q(s, a) represents the Q value for action a in state
s, Vθ1(s) denotes the value function of state s, which is
parameterized by θ1, and Aθ2(s

′, a) signifies the advantage
function of action a in the enhanced state s′, parameterized
by θ2. The term |A| represents the size of the action space,
LSIGMA is the loss function, and Λ is a hyperparameter.

V. EXPERIMENTS

In this section, we evaluate SIGMA through comprehen-
sive simulation experiments, comparing its performance with
SOTA baselines. We also conduct ablation studies to assess
the impact of each component of our approach. Additionally,
we test the robustness of the trained model by deploying it
in simulation and real world environment.

A. Main Results Comparison

For our experiments, we train our models on structured
environments of varying sizes, randomly chosen from a
uniform distribution between 10 and 40, while consistently
deploying 5 agents. During testing, we explore environments
of 20, 40, and 60 sizes, scaling the number of agents from
4 up to 128.

Our evaluation include a comparison with 6 SOTA
MAPF solutions: PRIMAL [15], MAPPER [35], DHC [16],
DCC [22], SCRIMP [6], and ALPHA [17]. Additionally,
we benchmark against the searchbased, bounded-optimal
centralized planner ODrM* with an inflation factor of ϵ =
2.0 [18]. For a fair comparison, each planner was tested on
the same set of 200 randomly-generated environments.

We employ three metrics to assess performance: 1)
Episode Length(EL): This measures the efficiency of a
solution by counting the number of actions agents take
to reach their goals within a single episode. 2) Arrival
Rate(AR): This is the percentage of agents that reach their
goals across all episodes. 3) Success Rate(SR): This metric
evaluates a planner’s ability to completely fulfill a task.
Notably, learning-based methods may show a low SR but
still have a high AR, which highlights the importance of AR
in evaluating episodes that nearly reach completion without
being deemed total failures. The results are presented in
Table II.

In our experiments, SIGMA consistently outperforms
other learning-based planners in terms of SR across all
tasks. Notably, as the number of agents increases, SIGMA’s
improvement in SR significantly exceeds that of the baseline
planners. For instance, in complex scenarios where most
learning-based planners struggle or fail to solve the problems,
such as with 128 agents on a 40×40 map, SIGMA achieves a



SR of 69%. Even more impressively, on a larger 60×60 map,
SIGMA’s SR reaches 80%. These results highlight the effec-
tiveness of our approach where the agents, through achieving
consensus, successfully avoid congestion and overcrowding,
demonstrating robust performance even under challenging
conditions. Additionally, it is noteworthy that on a smaller
20x20 map, although SIGMA exhibits a high SR, the AR
isn’t as impressive. This indicates that while consensus
effectively prevents congestion, it does not necessarily aid
in navigating out of such congested scenarios efficiently.

B. Ablation Analysis

Our method focuses on encoding the sheaf structure(stalks
and restriction maps) and integrating global section loss.
These elements are applied to both the input of the advantage
function and the loss function for updating the network to
ensure the correctness of the sheaf structure. To analyze
the importance of these elements, we experimented with
three ablation variants of SIGMA: 1) Encoded Stalk(ES):
This variant tested only the stalks’ encoding effectiveness
by removing global section loss and restriction maps. 2)
Weighted Penalty(WP): This setup assessed the influence of
global section loss within the loss calculation by excluding
them. 3) Feature Impact(FI): We evaluated the impact of
removing restriction maps from the advantage function while
keeping other elements constant.

Fig. 5: Success rates of ablation variants on 40x40 and 60x60
maps.

The results of the ablation variants are shown in Figure 5.
Encoded stalk results in performance similar to the baselines,
indicating that this component alone doesn’t significantly
influence success rates. The introduction of the restriction
maps leads to a slight improvement in success rates, sug-
gesting a beneficial but limited role in the overall system’s
performance. A notable enhancement is observed with the
incorporation of global section loss, particularly as the
number of agents increases. This enhancement significantly
boosts success rates, demonstrating that global section loss
effectively guide agents towards explicit consensus. When all
components of the SIGMA framework are utilized, including
both stalks, restriction maps, and global section loss, there
is a further increase in performance. This indicates that the
full integration of the sheaf structure is crucial for achieving
consensus.

C. Experimental Validation

(a) Simulation Environment (b) Real World

Fig. 6: Experiments with real robots on room-like map.

As shown in Figure 6, Figure 6a represents the simula-
tion environment, and Figure 6b represents the real world
environment. In this setup, each cell in the real world
environment measures 0.3m on each side, slightly larger
than the agents to ensure each agent occupies only one
cell on the map. We employ 3 robots, each equipped with
Mecanum wheels and measuring approximately 0.23m ×
0.2m. The accurate positions of these robots are tracked
using the OptiTrack Motion Capture System. The starting
and goal positions of the agents are randomly configured.
In this experiment, although the robots recognize the virtual
positions of obstacles and are programmed to avoid these
areas, there are no physical obstacles in the real environment,
preventing any interference with the line of sight needed for
the OptiTrack motion capture system.

VI. CONCLUSIONS

In this paper, we introduce SIGMA, a novel MAPF planner
that pushes beyond the constraints of limited FOV commonly
found in existing learning-based MAPF planners by utilizing
sheaf theory to let all agents reason about and reach a
team-wide consensus. Our approach efficiently encodes the
sheaf structure within MAPF, incorporating global section
loss to measure consistency. Through extensive experiments
conducted on highly structured maps with varying team
sizes and environmental complexities, SIGMA consistently
outperforms SOTA learning-based MAPF planners and a
bounded-optimal search-based planner in most scenarios. By
rigorously proving the transition from local observation to
global consensus, this work proposes a novel perspective to
the MAPF research community.

In future work, we plan to focus on enriching the intri-
cate relationships among agents by building consensus on
more complex graphs. This will involve exploring advanced
models and techniques that can handle and interpret the
interactions and dependencies within larger, more complex
network structures.
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