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Abstract— Persistent monitoring of dynamic targets is es-
sential in real-world applications such as disaster response,
environmental sensing, and wildlife conservation, where mobile
agents must continuously gather information under uncertainty.
We propose COMPASS, a multi-agent reinforcement learning
(MARL) framework that enables decentralized agents to per-
sistently monitor multiple moving targets efficiently. We model
the environment as a graph, where nodes represent spatial
locations and edges capture topological proximity, allowing
agents to reason over structured layouts and revisit informative
regions as needed. Each agent independently selects actions
based on a shared spatio-temporal attention network that we
design to integrate historical observations and spatial context.
We model target dynamics using Gaussian Processes (GPs),
which support principled belief updates and enable uncertainty-
aware planning. We train COMPASS using centralized value
estimation and decentralized policy execution under an adaptive
reward setting. Our extensive experiments demonstrate that
COMPASS consistently outperforms strong baselines in uncer-
tainty reduction, target coverage, and coordination efficiency
across dynamic multi-target scenarios.

I. INTRODUCTION

Persistent monitoring requires a team of mobile agents
to frequently visit dynamic targets to maintain an accu-
rate, shared belief of their states. This problem is cen-
tral to applications like environmental sensing and dis-
aster response, which operate under strict resource con-
straints [1], [2]. A successful strategy must balance spatial
coverage—minimizing revisit times—with temporal track-
ing, selecting viewpoints that best reduce uncertainty as
targets move.

We consider multi-agent monitoring in environments
where neither target motion models nor spatial distributions
are known beforehand. Our solution, COMPASS, equips
each agent with a light-weight yet expressive decision mod-
ule that combines Gaussian-Process (GP) belief estimation
with a spatio-temporal transformer. The GP layer fuses new
observations into probabilistic predictions and uncertainties
for every target, while the transformer first aggregates how
those beliefs evolve across a sliding temporal window and
then reasons over the graph that discretizes free space. All
computations run locally on board, and agents exchange only
compact belief updates so that coordination scales gracefully
with team size and does not rely on a global map or a central
planner.

Earlier research illuminates separate facets of this chal-
lenge but stops short of a unified solution. STAMP leverages
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Fig. 1: Illustration of the COMPASS framework in a
simulated multi-agent wildlife monitoring task. (Left) Vi-
sualization of three UAV agents’ trajectories and correspond-
ing belief maps over dynamic targets; brighter areas denote
higher uncertainty regions that agents are incentivized to
explore. (Right) AirSim-based 3D deployment, where three
UAVs cooperatively track multiple moving animal targets
modeled with distinct 3D meshes.

temporal attention to trade exploration for revisit frequency
but assumes a single robot [3]. MA-G-PPO extends attention
mechanisms to multi-agent reinforcement learning (MARL)
yet depends on continuous communication and a coarse
global occupancy grid [4]. GALOPP accounts for sensing,
localisation, and connectivity constraints in heterogeneous
teams, though it lacks a principled way of incorporating
historical observations when choosing future actions [5]. In
our work, we address tasks characterized by highly dynamic
spatio-temporal dependencies, where both target motions
and agent interactions evolve continuously over time. In-
spired by recent findings in spatio-temporal reasoning for
dynamic robotics and perception tasks [6], [7], we design
a unified transformer architecture that explicitly encodes
temporal evolution and spatial relations in a theoretically
grounded manner. By jointly modelling uncertainty with
GPs and coupling spatial and temporal reasoning inside
one transformer, COMPASS closes this gap and produces
decentralised policies that adapt online to moving targets.

We test COMPASS in a high-fidelity simulator populated
with targets that follow partially random trajectories. Against
competitive baselines—STAMP*, Auction, Coverage, and
Random—our framework achieves the lowest mean predic-
tive uncertainty, the most balanced visitation statistics, and
strong scalability across different graph densities and team
sizes, establishing a new reference point for cooperative
persistent monitoring.



II. RELATED WORK

Persistent monitoring problems can be broadly divided
into two categories: field monitoring, which focuses on
estimating and tracking continuous environmental variables
over spatial domains, and target monitoring, which aims
to maintain accurate knowledge of discrete, dynamically
moving entities [8]. Gaussian Processes (GPs) have been
widely adopted in field monitoring due to their ability to
model spatial-temporal correlations and quantify uncertainty
for decision-making [9]. Binney et al. [10] leveraged mutual
information to optimize robot trajectories in aquatic environ-
ments, while Hitz et al. [11] applied GPs to enable adaptive
online planning in oceanographic sampling tasks. Hollinger
and Sukhatme [12] further used GP-based predictions to
guide exploration towards regions of high expected infor-
mation gain.

While early approaches focused on planning optimal vis-
itation sequences to reduce target state uncertainty, many of
these are inspired by combinatorial formulations such as vari-
ants of the Traveling Salesman Problem (TSP) [13]. Smith et
al. [14] introduced uncertainty-aware cost functions to guide
robot routing. However, these methods often assume static
or predictable target dynamics, limiting their applicability
to realistic, dynamic settings [15]. To address this, adaptive
routing methods like the Orienteering Problem (OP) have
been explored, which prioritize high-value regions based on
changing conditions [16]. For instance, Yu et al. [17] used
stochastic TSP variants to tackle uncertain urban air mobility
tasks. Despite these advances, such formulations typically
focus on one-shot routing and lack the temporal adaptivity
required for persistent monitoring of evolving targets.

Reinforcement learning (RL) has emerged as a powerful
tool for persistent monitoring, enabling agents to adapt to
dynamic environments through trial-and-error learning. Deep
RL (DRL) approaches, such as those combining PHD filters
with neural policies [18] or incorporating recurrent structures
for temporal reasoning [19], have improved multi-target
tracking performance by learning from interaction histo-
ries. Meanwhile, attention mechanisms have shown strong
potential for capturing temporal and spatial dependencies
in structured domains. Originally proposed for NLP [20],
attention has been applied in robotics to improve exploration
efficiency [21] and planning robustness [6]. However, most
existing works isolate either spatial [22] or temporal [14]
reasoning. While some, like Hu et al. [7], integrate both in
static prediction settings, they are not designed for decen-
tralized multi-agent coordination. These limitations motivate
our approach, which unifies spatio-temporal attention within
a graph-based reinforcement learning framework for scalable
and cooperative target monitoring.

Previous work has highlighted the importance of leverag-
ing spatial and temporal structure for planning under uncer-
tainty [3]. Building on this, our method combines GP-based
uncertainty modeling with a Spatio-Temporal Attention Net-
work that encodes both historical temporal dependencies
and spatial interactions among agents and targets. Unlike

prior approaches, we unify these dimensions into a coher-
ent framework. Additionally, we incorporate agent presence
information into the input features, enabling context-rich
and adaptive monitoring strategies. This idea is aligned with
Miao et al. [23], who demonstrated the benefits of presence-
aware planning in multi-agent navigation.

III. PROBLEM SETUP

We consider the task of multi-agent persistent monitoring,
where a team of M autonomous agents monitors N mobile
targets T = {T1, ..., TN} within a bounded 2D space W ⊆
R2. Each target j has an evolving state (e.g. location, field
distribution) xj(t) ∈ Xj , governed by unknown or stochastic
dynamics. Here, Xj ⊆ R2 denotes the spatial state space
of target j, representing all possible positions within the
monitoring region. The objective is to maintain accurate
belief estimates over all target states throughout the mission.

A. Belief Modeling with Gaussian Processes

In this paper, we focus exclusively on the positional
dynamics of the targets, i.e., we model only their location
changes over time and ignore other potential state variables
such as velocity or heading. To model spatio-temporal un-
certainty over target locations, we adopt Gaussian Processes
(GPs) [3], [24], maintaining an independent GP GPj for each
target j. The inputs to each Gaussian Process are spatio-
temporal vectors

x = [p, t ] = [ p1, t1, . . . , pk, tk ],

when aggregating a sector or sequence of k measurements,
while the outputs represent information about target pres-
ence: its posterior mean µj(x) and variance σ2

j (x) serve
as belief and uncertainty estimates, respectively.

In our implementation, we employ the Matérn kernel [25]
with separate spatial and temporal length scales. Sensor
observations, represented as binary detections indicating the
presence or absence of each target within the sensor’s
field of view, are incorporated as noise-free data points
((pobs, tobs), yobs) to incrementally update the GPs.

B. Environment Representation via Graph Discretization

To enable efficient planning and computation, we dis-
cretize the continuous workspace W ⊆ R2 into a graph
G = (V, E), where the node set V = {v1, ..., vK} represents
monitoring waypoint candidates and the edge set E defines
traversable paths between them. We construct the graph using
k-nearest neighbor (k-NN) sampling to ensure connectiv-
ity, which supports efficient multi-agent policy learning, as
agents’ observations are tied to their current node locations,
their actions correspond to transitions to neighboring nodes,
and Gaussian Processes (GPs) inference, which is used
for belief updates, is performed only at node positions,
significantly reducing computational overhead.

C. Sensing and Constraints

Each agent has a fixed sensing radius rsense and can
observe the presence of nearby targets within this range. At



each time step, for every target Tj , we determine whether
it lies within the sensing radius of any agent. If so, the
corresponding observation is assigned to the node currently
occupied by the observing agent and recorded as a positive
binary detection y(j) = 1; otherwise, y(j) = 0. These obser-
vations are then used to update the Gaussian Process (GP)
belief model associated with target Tj , allowing principled
belief refinement over time.

To encourage exploration efficiency and enforce practical
constraints, we define a global mission budget B that limits
the total number of allowable agent actions throughout the
episode. While bounded, B is set to be sufficiently large to
reflect the persistent nature of the monitoring task.

IV. METHOD

We formulate the multi-agent persistent monitoring task
as a Decentralized Partially Observable Markov Decision
Process (Dec-POMDP), where a team of agents aims to
minimize global uncertainty of target locations through coor-
dinated policies. Each agent observes only local information
and must act independently, while the team collectively
reduces overall uncertainty through decentralized execution.
To solve this, we design a deep reinforcement learning (DRL)
framework that integrates Gaussian Process-based belief esti-
mation, spatio-temporal attention-based policy learning, and
a graph-based environment representation.

A. Problem Modeling and Belief Estimation

We deploy a team of M agents on the discretized graph
G = (V, E) to monitor N mobile targets that evolve freely in
the continuous workspace W . By constraining agent motion
to graph edges, we significantly reduce planning complexity,
while still allowing the targets to move in a continuous spatial
field. Time advances in action–observation cycles indexed by
t = 1, 2, . . . , T .

At each decision step, agents rely on a belief repre-
sentation constructed using Gaussian Processes (GPs), as
described in Section III-A. These GPs provide probabilistic
estimates of each target’s presence across space and time, and
we evaluate their posterior mean and variance at every node
for both the current time t and a short-term future horizon t+
δ. These predictions are concatenated into node-level feature
vectors that represent the current and anticipated information
landscape. To reflect the deployment state, a binary node
presence indicator is appended to each node feature vector,
indicating whether it is currently visited by any agent. This
representation supports decision-making under uncertainty
by informing agents of each other’s locations, enabling
coordinated spatio-temporal task allocation via the attention-
based policy network. Agents share compact measurement
updates during execution: after each measurement cycle,
the raw measurements from all agents are aggregated and
broadcast globally. Each agent then uses this identical set of
observations to independently update its local GP, ensuring
the belief maps across the team remain synchronized. Thus,
although the policy is executed locally, coordination occurs
via this global sharing of raw sensor data.

B. Reinforcement Learning Setup

In our formulation, each agent interacts with the envi-
ronment through local observations and selects navigation
actions based on its neighborhood structure. The system
evolves over discrete decision steps k = 0, 1, 2, . . . , and
the learning objective is to maximize cumulative reward
over time while guiding agents to explore informative and
complementary regions of the environment.

Observation Space. At each step k, agent m observes a
local representation om(k), which consists of the temporally
encoded feature efinal(vloc(m,k), tk) of its current node, along
with the feature embeddings of its K neighboring nodes.
These features encode GP predictions (µj , σ

2
j ) for each

target j, agent presence indicators, 2D spatial coordinates,
and node-centric graph position encodings. The resulting
observation captures both uncertainty estimates and spatial
deployment context, enabling agents to reason over where
information gain is likely to be maximized over the entire
task horizon.

Action Space. Given its current location vloc(m,k), agent
m selects an action am(k) from its discrete neighborhood set
Nm(k) ⊂ V , where Nm(k) contains nodes that are one-hop
reachable via graph edge transitions. The state transition for
agent m is defined as:

vloc(m,k+1) = am(k), where am(k) ∈ Nm(k).

This formulation naturally constrains motion to the physical
topology of the sensing environment.

Reward Function. To encourage efficient and informative
exploration, we define a step-wise reward as a weighted com-
bination of three components: information gain, redundancy
penalty, and path cost. The reward at decision step k is:

R(k) = αinfo(k) · IG(k)−αcov(k) ·CP(k)−αpath(k) ·PP(k),

where IG(k) quantifies the cumulative information gain
across all targets, computed as the total reduction in GP
posterior variance, CP(k) penalizes redundant observations
by scaling their contributions based on the remaining uncer-
tainty at each location, thereby discouraging multiple agents
from repeatedly visiting the same well-explored nodes, and
PP(k) reflects overall trajectory cost, measured as the sum
of shortest-path distances each agent travels between consec-
utive decision steps on the graph.

The weight coefficients are adaptively scheduled over
time via a linear curriculum: αinfo(k) = 3.0 − 1.5 · ρ(k),
αcov(k) = 0.1+0.3 ·ρ(k), and αpath(k) = 0.05+0.05 ·ρ(k),
where ρ(k) = min(k/20000, 1.0) denotes normalized train-
ing progress. This scheduling strategy emphasizes aggressive
information gathering during early training (via a high αinfo),
when uncertainty is widespread, and gradually shifts toward
encouraging spatial coverage and movement efficiency. Such
a curriculum fosters a natural transition from exploration
to refinement, aligning learning incentives with different
training stages.



Fig. 2: Overview of the COMPASS spatio-temporal attention network. Agent observations are first integrated by Gaussian
Processes (GPs) to update belief maps. Encoded historical node features are processed by a Temporal Encoder and a Spatial
Encoder with positional and masking mechanisms. The fused representation is used by shared Actor and Critic heads for
decentralized policy execution, enabling cooperative uncertainty-aware decision-making among agents.

C. Network Architecture

Our COMPASS network consists of a shared spatio-
temporal attention model used by all agents to extract mean-
ingful features from historical observations and graph struc-
ture. The network is composed of a temporal decoder to cap-
ture temporal dependencies, a spatial encoder to model inter-
node relationships, and policy and value heads to produce
action probabilities and value estimates. All agents share
parameters of a single network, and experience collected by
all agents is aggregated to jointly optimize the network via
centralized training.

a) Feature Embedding and Input Projection: Each
node maintains a buffer containing features extracted over
the past H timesteps. These include GP-derived mean and
variance for each target, binary presence flags indicating
agent presence, and spatial coordinates. Average pooling
with stride s is applied to compress the temporal dimension,
yielding a feature sequence of shape H ′ × df . Each com-
ponent is embedded into a common feature space through
dedicated linear projections. A final projection layer maps
the concatenated embeddings to a fixed embedding size de,
resulting in the initial node embeddings.

b) Temporal Encoder: For each node v, we maintain
a pooled history Hv = {hv,t−H+1, . . . ,hv,t}. We treat the
most recent vector hv,t as the query, and the full history Hv

as keys and values, WQ,WK ,WV are learnable weight
matrices, i.e.

Q = hv,tW
Q, K = HvW

K , V = HvW
V .

Multi-head attention then computes a fused embedding

etemp(v, t) = Concat(head1, . . . ,headNh
)WO,

headi = Softmax
(QiK

⊤
i√

dk

)
Vi

This temporally-contextual embedding is then forwarded
to the spatial encoder.

c) Spatial Encoder: To capture spatial correlations,
the temporal embeddings are processed by a Transformer
encoder that attends across all nodes. Each node representa-

tion is augmented with spatial priors, including a Laplacian
positional encoding and a current presence embedding. The
resulting spatial embedding is then concatenated with the
shortest path distance to the nearest agent and projected back
to the embedding dimension, yielding the final node feature
efinal(v, t).

d) Policy and Critic Heads: For each agent, the policy
head queries the features of its K neighboring nodes using
a single-head attention mechanism. The resulting attention
scores form the policy output π(a|s), a probability distribu-
tion over the candidate action set. In parallel, a decentralized
critic head estimates the state value V (s) from the agent’s
current node embedding. Both heads are driven by the same
shared backbone, enabling joint optimization and decentral-
ized execution.

D. Training Settings

We train the shared network using Proximal Policy Opti-
mization (PPO) via centralized training. For data collection,
we run Nenv = 16 parallel environments, gathering trajec-
tories of length T = 100 from all agents into a shared
experience buffer for joint gradient updates.

The policy is optimized using PPO’s clipped surrogate
objective with a clipping factor of ϵ = 0.2:

LPPO = Ek

[
min( rk(θ)Â(k),

clip(rk(θ), 1− ϵ, 1 + ϵ)Â(k))
] (1)

We estimate advantages using GAE (γ = 0.99, λ = 0.95)
and supplement the loss with a value function term and an en-
tropy bonus. The policy is updated using the Adam optimizer
with a learning rate of 10−4, decayed exponentially. Total
training took approximately 20 GPU-hours on two NVIDIA
A100 GPUs.

V. EVALUATION

A. Experimental Setup

a) Simulation Environment: We conduct all exper-
iments in simulated environments. Evaluations including
those in Table I and Table II, are performed in a scripted



TABLE I: Performance comparison across different graph sizes (K ∈ {100, 200, 400}) and agent team sizes (M ∈ {2, 3, 5}).
For each metric, ↓ indicates lower is better, and ↑ indicates higher is better. Results are averaged over 10 evaluation runs.

Metric COMPASS STAMP* Auction Coverage Random

K M=2 M=3 M=5 M=2 M=3 M=5 M=2 M=3 M=5 M=2 M=3 M=5 M=2 M=3 M=5

Avg Unc ↓
100 0.49 0.42 0.37 0.50 0.53 0.48 0.66 0.63 0.59 0.76 0.70 0.63 0.80 0.78 0.71
200 0.52 0.45 0.40 0.57 0.55 0.50 0.72 0.66 0.60 0.79 0.75 0.69 0.85 0.82 0.75
400 0.53 0.46 0.41 0.60 0.58 0.52 0.74 0.70 0.64 0.83 0.82 0.75 0.87 0.84 0.76

Avg JSD ↓
100 0.16 0.12 0.10 0.17 0.18 0.14 0.27 0.22 0.19 0.37 0.32 0.27 0.43 0.41 0.35
200 0.18 0.14 0.11 0.21 0.19 0.16 0.30 0.24 0.20 0.39 0.35 0.29 0.45 0.43 0.37
400 0.20 0.17 0.13 0.24 0.21 0.17 0.33 0.25 0.22 0.42 0.39 0.33 0.47 0.46 0.39

Min Visits ↑
100 10.1 12.3 18.4 9.9 8.8 10.5 4.6 6.1 7.2 2.8 3.5 5.2 3.2 4.2 5.5
200 9.4 11.8 17.3 8.8 8.6 10.0 4.8 6.3 7.8 2.9 3.7 5.4 3.1 3.7 5.0
400 9.2 11.1 14.2 8.4 8.6 9.7 4.5 6.3 7.5 3.0 3.7 5.5 1.7 2.5 4.2

Avg Visits ↑
100 13.5 16.5 23.9 13.1 11.2 13.5 6.2 7.8 9.1 4.1 5.5 7.5 4.5 6.1 7.8
200 13.3 16.2 21.5 11.8 10.8 12.8 6.3 7.5 9.3 4.0 4.8 7.2 4.2 4.6 6.9
400 13.0 15.1 19.0 10.9 9.2 11.5 5.8 6.9 8.4 3.4 3.5 6.5 3.2 3.2 5.8

Inference Time (ms) ↓ 200 12.5 13.8 15.9 8.2 8.5 9.0 2.5 2.9 3.2 0.1 0.1 0.2 0.1 0.1 0.1

simulator with visualization. We also validate our frame-
work in AirSim for high-fidelity simulation, as shown in
Fig. 3, which captures realistic spatial dynamics and multi-
agent coordination in 3D settings. The workspace W is a
continuous 2D area discretized into a graph G, where K
nodes are uniformly sampled in the unit square [0, 1]2. Each
node is connected to its k = 10 nearest neighbors to ensure
connectivity. Unless otherwise specified, we set K = 200,
rsense = 0.1 and use a default speed factor of 0.6, indicating
that targets move at 60% of the agents’ speed.

The system includes M = 3 mobile agents tasked with
monitoring N = 8 dynamic targets, each following nontrivial
continuous trajectories to simulate realistic spatial drift.
Agent sensing is modeled as a circular region with fixed
radius rsense, and the belief about each target’s distribution is
maintained via Gaussian Processes (GPs), which are updated
upon successful observation. Each evaluation episode is
constrained by a mission budget B = 30, denoting the
maximum allowed action steps per agent.

b) Evaluation Metrics: To assess the performance of
each method, we adopt four quantitative metrics. (1) Average
Uncertainty (Avg Unc) measures the mean posterior stan-
dard deviation aggregated over all targets, spatial nodes, and
time steps; it captures the overall confidence in the learned
belief, with lower values indicating more accurate and re-
liable estimates. (2) Average Jensen-Shannon Divergence
(Avg JSD) quantifies the average divergence between the
GP-estimated belief distribution and the ground truth distri-
bution of target locations, computed over time and space;
lower values indicate better alignment and belief fidelity. (3)
Minimum Target Visits (Min Visits) records the smallest
number of successful observations made for any target in
an episode; it reflects worst-case neglect and the ability to
maintain balanced monitoring across all targets, with higher
values being preferred. (4) Average Target Visits (Avg
Visits) captures the average number of observations across
all targets during an episode, representing overall sensing
effort and temporal coverage density; again, higher values

are better.
c) Baseline Methods: We compare our proposed

method, COMPASS, with four baselines:
• STAMP*: A decentralized adaptation of the STAMP

framework [3], where each agent independently runs its
own policy and value networks without communication
or parameter sharing. Each agent relies solely on local
observations and historical context to determine its
action sequence.

• Auction: A distributed coordination strategy where
agents compete for targets using an auction-style bid-
ding mechanism. Each agent evaluates potential targets
based on their spatial proximity and associated uncer-
tainty and selects actions that maximize its local utility
score. No centralized planner or global policy is used.

• Coverage (Lawnmower): A non-reactive strategy in
which agents follow predefined paths to systematically
traverse the environment. Paths are initialized from
a single global route (e.g., TSP) and divided among
agents. This strategy ignores current uncertainty or
target locations, aiming only for spatial coverage.

• Random: At each time step, agents randomly select a
neighbor node to move to, without regard for any belief
state or historical observation. This baseline represents
an uninformed exploratory behavior and serves as a
lower-bound reference.

B. Performance Analysis and Scalability

Table I reports comparative results across varying graph
sizes (K) and team sizes (M ). COMPASS consistently
achieves the lowest Average Uncertainty (Avg Unc) and
Jensen-Shannon Divergence (Avg JSD), indicating superior
belief estimation and uncertainty reduction. As K increases,
all methods experience moderately higher uncertainty due to
expanded spatial areas and reduced node density. However,
COMPASS exhibits minimal degradation (e.g., Avg Unc rises
only from 0.42 to 0.46 for M = 3), while baselines like
STAMP* and Auction deteriorate more noticeably. It also
maintains belief fidelity at small M (e.g., M = 2) and



benefits more from larger teams, underscoring its ability to
coordinate agents effectively in sparse environments.

Coverage-related metrics reinforce this trend. COMPASS
achieves the highest Minimum and Average Target Visits
across all settings, reflecting strong cooperation and efficient
budget use. The gains with increasing M are particularly
notable (e.g., Avg Visits rises from 16.5 to 23.9 as M
grows from 3 to 5 under K = 100), while baselines either
saturate or improve marginally. Even under more challenging
K = 400 scenarios, COMPASS sustains better coverage
and revisit balance. These results confirm that COMPASS
scales robustly with environmental complexity and team
size, making it a strong candidate for real-world persistent
surveillance.

Fig. 3: Average uncertainty over mission time. COMPASS
achieves the fastest and most stable uncertainty reduction
compared to baseline methods (K = 200,M = 3, N =
8). Solid lines show means; shaded areas denote standard
deviations over 20 runs.

Figure 3 shows the temporal evolution of average un-
certainty under the default configuration (K = 200) in
simulation. COMPASS rapidly reduces uncertainty during
the early phase and converges to the lowest level, sustaining
it through the mission. STAMP*, lacking centralized value
estimation, reduces uncertainty slower and plateaus at a
higher level. Auction exhibits fast initial drops but stagnates
due to its myopic nature. Coverage and Random perform
poorly throughout. These trends confirm that COMPASS
enables fast, consistent, and well-coordinated information
gathering over time.

C. Ablation Study
To assess the contribution of each component in COM-

PASS, we conduct an ablation study under the default setting
(K = 200, M = 3, N = 8, B = 30). We report
average values across evaluation episodes for three key
metrics: Uncertainty, RMSE, and Target Visits. Specifically,
we evaluate the following three ablated variants: (1) No
PresenceInfo: Removes the presence indicator from node
features, preventing agents from observing each other’s cur-
rent positions on the graph. (2) No SpatialAttn: Removes the

TABLE II: Ablation results under default configuration (K =
200). All values are averaged over 10 runs. Lower Uncer-
tainty and RMSE are better; higher Visits is better.

Variant Uncertainty RMSE Visits

Full COMPASS 0.45 0.26 16.5
No PresenceInfo 0.53 0.35 14.6
No SpatialAttn 0.57 0.35 12.1
No TemporalAttn 0.56 0.29 13.7

spatial attention module and replaces it with mean pooling
over each node’s spatial neighbors. (3) No TemporalAttn:
Removes the temporal attention module and applies uniform
averaging over historical node embeddings.

Table II shows that removing spatial attention leads to
the largest degradation, with Uncertainty and RMSE both
increasing, and fewer targets being visited. This highlights
the importance of learning spatial dependencies to guide
agents toward informative regions. The temporal attention
module also plays a key role; without it, the agent’s ability to
track dynamic targets is impaired, resulting in reduced visit
counts and degraded accuracy. Removing presence encoding
leads to a moderate drop, suggesting that while spatial
context is beneficial, attention mechanisms contribute more
significantly to model performance.

VI. CONCLUSION AND FUTURE WORK

This paper introduced COMPASS, a decentralised frame-
work that couples GP-based belief estimation with a shared
spatio-temporal attention backbone. Agents trained with a
central-critic PPO rely only on local observations yet coor-
dinate implicitly, and experiments show up to 20% lower
mean uncertainty together with a twofold improvement in
worst-case visitation frequency relative to strong learning
and heuristic baselines. Ablation studies verify that spatial
and temporal attention are both indispensable, with spatial
reasoning providing the greater share of the gain.

Although our simulator already includes stochastic target
motion and limited sensing, it still omits many real-world
complexities. Future work will narrow this gap through
domain randomisation, robust policy training, and model-
adaptation techniques that compensate for sensor noise,
localisation drift, occlusion, and actuation limits. Using high-
level waypoint control rather than low-level motor commands
is a deliberate design choice that simplifies transfer across
robots and promotes scalability, yet it may sacrifice fine-
grained agility; exploring hybrid control stacks that blend
the two levels is therefore an interesting direction. We
also plan to enrich cooperation via explicit yet bandwidth-
aware communication and to validate COMPASS on physical
platforms operating over extended horizons. By providing
an uncertainty-aware and computationally efficient blueprint,
COMPASS moves a step closer to field-ready autonomous
surveillance systems.
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[8] Marija Popović, Teresa Vidal-Calleja, Jen Jen Chung, Juan Nieto, and
Roland Siegwart. Informative path planning for active field mapping
under localization uncertainty. In 2020 IEEE International Conference
on Robotics and Automation (ICRA), pages 10751–10757. IEEE, 2020.

[9] Matthias Seeger. Gaussian processes for machine learning. Interna-
tional journal of neural systems, 14(02):69–106, 2004.

[10] Jonathan Binney, Andreas Krause, and Gaurav S Sukhatme. Informa-
tive path planning for an autonomous underwater vehicle. In 2010
IEEE International Conference on Robotics and Automation, pages
4791–4796. IEEE, 2010.

[11] Gregory Hitz, Alkis Gotovos, Marie-Éve Garneau, Cédric Pradalier,
Andreas Krause, Roland Y Siegwart, et al. Fully autonomous focused
exploration for robotic environmental monitoring. In 2014 IEEE
International Conference on Robotics and Automation (ICRA), pages
2658–2664. IEEE, 2014.

[12] Geoffrey A Hollinger and Gaurav S Sukhatme. Sampling-based
robotic information gathering algorithms. The International Journal
of Robotics Research, 33(9):1271–1287, 2014.

[13] Liren Jin, Julius Rückin, Stefan H Kiss, Teresa Vidal-Calleja, and
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