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Abstract—Cooperative control of connected automated vehicles
(CAVs) offers a promising solution for reducing traffic congestion
and accidents. However, existing optimization-based and search-
based methods for trajectory planning and vehicle schedul-
ing struggle with real-time multi-vehicle control. This paper
introduces a hybrid bi-level approach that nests optimization
modelling within deep reinforcement learning (DRL) to jointly
optimize vehicle sequences, lane selections, and trajectories, pro-
viding a rapid, safe, and high-quality solution to enhance traffic
performance at multi-lane freeway merging sections. Specifically,
we approach the problem of lane selection and vehicle sequencing
for multiple vehicles as a multi-step decision-making process.
At the upper level, we design a DRL agent with an attention-
based encoder-decoder structure that auto-regressively constructs
driving sequences and lane choices. It generates a probability
matrix to select the next passing vehicle and target lane based
on prior decisions at each step. The attention mechanism enables
the centralized upper level to adapt to scenarios with varying
vehicle counts without the need to retrain. At the lower level, we
formulate a model predictive control (MPC) planner to generate
safe trajectories. The resulting travel delay guides the upper-level
DRL agent learning to maximize overall traffic efficiency. More-
over, we introduce a leader-and-lane-specific credit assignment
mechanism that leverages domain knowledge to link each action
with associated travel delays. This mechanism enables the agent
to accurately recognize the impact of decisions on total delay,
enhancing learning performance. Simulation results suggest that
the proposed approach’s superior real-time performance and
scalability from several to over a dozen vehicles, making it well-
suited for practical automated merging tasks.

Index Terms—Connected automated vehicles, deep reinforce-
ment learning, multi-lane on-ramp merging.

I. INTRODUCTION

REEWAY on-ramp merging areas are commonly rec-
ognized as typical bottlenecks where multiple traffic
streams compete for limited roadway capacity. The complex
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vehicle interaction in these lane-drop areas often results in
excessive emissions, congestion, and accidents [1]-[3]. Widely
implemented control approaches focus on the macroscopic
management of traffic flow, e.g. variable speed limit [4]
and ramp metering [5]. However, these approaches cannot
directly coordinate individual vehicle behaviour. In the future,
connected automated vehicles (CAVs) may introduce many
developments in microscopic traffic control, such as platoon
formation [6] and cooperative lane changes [7]. Leveraging
the cooperative driving capabilities of CAVs is expected to
enhance safety and improve traffic performance [8]-[11].

Significant research effort has been devoted to CAV-based
merging control. Early studies have mainly focused on trajec-
tory planning with predefined vehicle sequences for single-
lane freeway merging. These studies highlight the impor-
tance of coordinated speed adjustments between mainline and
on-ramp vehicles for smooth merging maneuvers [12]-[17].
Subsequent research has shifted towards vehicle sequence
decision-making, i.e., determining the order in which vehicles
pass through conflict areas [18]-[23]. In more general multi-
lane freeway merging scenarios, the joint optimization of
lane selection, vehicle sequences, and trajectories becomes
more challenging [24]-[31]. Existing approaches typically
fall into three categories: search-based, optimization-based,
and learning-based methods. However, search-based methods
often struggle to ensure solution quality, especially as the
number of CAVs increases and the solution space expands
exponentially. Optimization-based approaches are often too
computationally demanding for real-time use. Learning-based
methods typically lack formal safety guarantee.

To simultaneously ensure safety, maintain high solution
quality in joint optimization, and meet strict real-time re-
quirements, we propose a hybrid bi-level control framework,
where a deep reinforcement learning (DRL) agent at the upper
level determines lane selection and vehicle sequences and a
model predictive control (MPC) planner at the lower level
generates trajectories to implement upper-level’s decisions.
This proposed hybrid approach leverages the complementary
strengths of DRL’s computational efficiency and optimiza-
tion techniques’ safety guarantee to control multiple vehicles
driving through merging sections. Specifically, we frame lane
selection and vehicle sequencing as a multi-step decision-
making process, where the DRL agent generates a probability
matrix for target vehicles and lanes at each step based on
previous vehicle and lane decisions. To achieve this, we design
a policy network with an encoder-decoder structure as a DRL
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agent that auto-regressively constructs vehicle sequences and
lane selections. We then formulate an MPC planner to generate
trajectories and use the corresponding travel time as reward
signals to guide the DRL agent in learning a strategy that
minimizes total travel time. That is, the lower level performs
planning based on decisions from the upper level, and the
upper level optimizes its decisions based on the results of the
lower level. Moreover, we propose a leader-and-lane-specific
credit assignment mechanism that associates the decision made
at each step with the travel delay of affected vehicles. This
credit assignment mechanism helps the agent recognize the
impact of decisions on total delay, thereby improving learning
performance. We compare our approach with various methods,
and empirical simulation results show that it outperforms
rule-based methods and achieves performance comparable to
metaheuristic methods that require tens of minutes for search,
showing superior real-time performance of our approach.
Moreover, we evaluate our approach under varying numbers
of vehicles, from several to over a dozen, showing its great
scalability. We believe that these attributes, solid real-time
performance and scalability to varying vehicle counts, make
our approach highly suited for practical application.

The contributions of this paper are summarized as follows.

1) We propose a hybrid bi-level approach that integrates
DRL and MPC to optimize lane selection, driving se-
quences, and trajectories, enabling real-time planning for
multiple vehicles to maximize traffic efficiency.

2) We design a DRL agent that auto-regressively constructs
vehicle sequences and lane selection. At each step, the
DRL agent generates a vehicle-lane probability matrix
based on previous decisions to determine the next pass-
ing vehicle and its target lane.

3) We propose a leader-and-lane-specific credit assignment
mechanism that links each action with the related travel
delays, aiding the DRL agent in recognizing the impact
of decisions and enhancing learning performance.

4) We demonstrate the superior real-time performance of
the proposed hybrid approach, including traffic effi-
ciency and computation time, compared to the base-
line methods. The effectiveness of the proposed leader-
and-lane-specific credit assignment mechanism and the
adopted DRL techniques is also validated.

II. LITERATURE REVIEW

CAV-based merging control approaches can be categorized
into three types: tree-search-based, optimization-based, and
learning-based methods.

A. Tree-search-based Methods

Vehicle sequences are represented as paths from the root
to the leaf nodes of a tree, where each node corresponds to
a CAV, and child nodes are generated by adding uncovered
CAVs at successive levels. Many search methods are employed
to explore optimal paths within this tree structure for single-
lane freeway merging problems. Pei et al. [18] applied dy-
namic programming to find the optimal path, though travel
delay for each node was estimated rather than derived from

actual trajectories. Tang et al. [19] utilized the monte carlo
tree search to find a sub-optimal sequence within a limited
time. Shi et al. [20] used the depth-first search with heuristic
pruning rules to obtain solutions. Chen et al. [21] proposed a
sequential search method that incrementally adds one on-ramp
vehicle to the tree at a time, significantly reducing the number
of branches. Xie et al. [22] designed a Tabu Search algorithm
to determine merging sequences.

B. Optimization-based Mmethods

The problem is formulated as a mixed integer programming
model, with integer variables representing discrete sequencing
and lane-changing decisions and continuous variables denoting
acceleration, velocity, and position. Chen et al. [24] for-
mulated an optimization model incorporating car-following,
cruising, and lane-changing driving modes. The possible driv-
ing modes of multiple vehicles were enumerated and fed
into the model to find the best solution. Dollar et al. [25]
proposed a mixed-integer quadratic program model to plan a
vehicle’s lane change and acceleration, integrating the analytic
optimal control and integer programming. Yang et al. [26]
modeled the merging problem as a cooperative game, where
different sequences and lane assignments are enumerated and
compared for overall traffic performance. In contrast, Yu et
al. [27] and Wei et al. [28] approached the problem as a
non-cooperative game, optimizing the benefit of an individual
vehicle. Although these models explicitly define the problem
to seek an optimal solution, the combinatorial explosion of
possible sequences and lane assignments makes these models
computationally intractable, posing significant challenges in
meeting real-time requirements.

C. Learning-based Methods

Through offline training, DRL-based methods learn policies
that are applied online to solve the problem efficiently. One
DRL-based approach controls each CAV’s low-level actions
(e.g., acceleration or velocity) or high-level actions (e.g.,
yielding and lane changes). Chen et al. [29] formulated the
mixed-traffic merging problem as a multi-agent reinforcement
learning problem, where each vehicle makes high-level deci-
sions, such as turning left, turning right, cruising, speeding
up, and slowing down. Hu et al. [30] employed a graph con-
volutional network with attention to capture high-dimensional
CAV features and designed an action space containing discrete
manoeuvres, including acceleration, deceleration, and lane
changes. Hwang et al. [31] proposed a finite state machine
for four phases (gap selection, gap approach, negotiation,
and lane-change execution) and used DRL to execute lane
changes. Another approach treats the problem of CAV navi-
gation through conflict areas as a combinatorial optimization
problem, inspired by recent advancements in applying DRL
to solve vehicle routing problems [32]-[34]. Zhang et al. [35]
adopted the pointer network structure to determine a driving
sequence crossing an intersection and used tree search to
further refine the solutions. Similarly, Jiang et al. [36] applied
this structure to the single-lane freeway merging scenario.
This type of approach uses a sequence-to-sequence network



combined with DRL to optimize vehicle passing sequences,
providing a safe alternative to speed-optimization methods.

D. Comparison of Existing and Proposed Methods

In comparison, tree-search-based methods are flexible and
effective, but their solution quality often deteriorates as the
problem size increases. Optimization-based methods obtain
optimal solutions, but their high computational demands make
real-time application challenging. Learning-based methods al-
low rapid inference after training, yet they generally lack
formal safety guarantees and may not reliably prevent unsafe
actions, especially in unexpected or unfamiliar scenarios.

Overall, existing work on joint decisions for lane selections,
vehicle sequences, and vehicle trajectories remains limited
and faces significant downsides in terms of solution quality,
real-time requirement, and decision safety. Hence, this paper
proposes a bi-level control framework that combines the
complementary strengths of DRL for real-time performance
and optimization techniques for safety guarantee. Moreover,
our DRL-based agent formulates decision-making as lane as-
signment and vehicle sequencing, enabling a novel high-level
coordination strategy. In contrast to conventional learning-
based methods that directly output low-level control actions,
our abstraction enables more structured planning and achieves
more efficient, globally coordinated, and safer actions.

III. MATHEMATICAL PROBLEM FORMULATION

As shown in Fig. 1, we consider a typical freeway on-ramp
merging section, which includes two mainline lanes (an inside
lane and an outside lane), an on-ramp lane extending into
an acceleration lane, a roadside unit (RSU), and a trigger
point. The RSU, positioned upstream of the merge gore,
collects information from CAVs and transmits commands to
them. The trigger point on the on-ramp lane activates the
proposed control when on-ramp vehicles approach. Before
any vehicle approaches the trigger point, all CAVs operate
in car-following mode. Once an on-ramp vehicle crosses the
trigger point, the RSU initiates a control cycle. During each
control cycle, a CAV group is formed by including the on-ramp
vehicle that has passed the trigger point, the subsequent on-
ramp vehicles, and nearby mainline vehicles within a defined
distance range. This CAV group then follows the controller’s
instructions to adjust speed, change lanes, and execute merging
maneuvers. After completing these commands, these CAVs
return to the car-following mode. Note that this study makes
two assumptions. First, a fully cooperative environment is
assumed, where all CAVs comply with centrally coordinated
decisions. Second, the RSU is assumed to function as a perfect
sensor, without communication delays or signal losses.

Controlling multiple CAV streams at a multi-lane freeway
merging section includes three tasks: lane selection, vehicle
sequencing, and trajectory planning. Here, lane selection and
vehicle sequencing determine the target lanes and passing or-
ders for CAVs driving through the merging section. Trajectory
planning generates speed and acceleration profiles from their
initial positions to the end of the merging section, ensuring
CAVs reach selected lanes, follow assigned sequences, and
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Fig. 1. The considered multi-lane freeway merging section.

maintain safety throughout the process. These tasks are in-
terrelated: lane selection and vehicle sequencing impact tra-
jectory planning, while trajectory costs, in turn, influence the
determination of optimal lane selection and vehicle sequences.

TABLE 1
SET, PARAMETER, AND VARIABLE DEFINITIONS

Sets

I set of all CAVs, I ={1,2,...,|I|}; 4,5 € L.

L set of all lanes, L = {l1,l2,l3}; 1 € L.

O(p;,¢) set of occupied geometric space of vehicle ¢ at time ¢, modeled
as a rectangle centered at longitudinal position p; ;.

u set of the admissible ranges for control inputs.

% set of the admissible range for vehicle speeds.

P set of the admissible ranges for vehicle positions.

Parameters

Di,init  initial position of vehicle i € I.

Vi inic  initial speed of vehicle ¢ € I.

Pfinal end position of the acceleration lane.
minimum time headway.

Variables

Vil binary, equals 1 if CAV ¢ € [ is assigned to target lane | €

L\{l1}, 0 otherwise.
05,5 binary, equals 1 if CAVs ¢ € I and j € I (i # j) are assigned
to the same target lane, 0 otherwise.
binary, equals 1 if CAV ¢ € I is assigned ahead of CAV j € I
(i # j) in the same lane, O otherwise.
T; continuous, the total travel time of CAV ¢ € I through the
merging section.
continuous, the longitudinal position of CAV ¢ € I at time ¢t.
continuous, the longitudinal velocity of CAV 4 € I at time ¢.
continuous, the control input of CAV ¢ € I at time ¢.

pi(t)
v; (t)
Us; (t)

We first introduce the notations in Table I and then present

a general mathematical model. Let L = {ly,ls,13} denote
the set of lanes, corresponding to the on-ramp, outside lane,
and inside lane, respectively. Let I = {1,2,--- , |I|} represent

a group of CAVs. Then, we introduce the decision variables
summarized in Table I. For each vehicle ¢« € I at time ¢,
let continuous decision variables p;¢, v;¢, and u;; denote
the longitudinal position, speed, and acceleration, respectively.
Here, longitudinal positions refer to the positions along each
lane. Let the binary decision variable «y;; denote the target
mainline lane choice of vehicle i € I, selected from L\ {i1}.
Specifically, «;; equals one if vehicle ¢ selects mainline
lane [ as its target lane, and equals zero otherwise. Variable
d;,; indicates whether vehicles 7 and j choose to go the
same target lane, and variable «; ; defines their driving order
when 6; ; = 1. Finally, variable T; denotes the total travel
time of vehicle ¢ € I through the merging section, defined
as the duration from when the RSU is triggered to when
vehicle i passes the endpoint of acceleration lane. According



to the notations defined above, the mixed integer nonlinear
programming (MINLP) model is formulated as follows:

min » T (1.1)
el
subject to:
> oqu=1 Viel (1.2)
leL\{l1}
Yo e v =0y Vigjel(i#j)  (13)
leL\{l1}
i taj; =0 Vi,j e I(i # §) (1.4)
Di,0 = Pi,init Viel (1.5)
Vi,0 = Vi,init Viel (1.6)
Di, T; = Pfinal Viel (1.7)
0iillayj —aji)(T; —T3) —h] >=0
Vi,j € 1(i # j) (1.8)
CZ: (t) = wi(t) Vie[Lt<T; (1.9)
szi(t):vi(t) VieI,t<T; (1.10)
Oit) NO(pje) =2 Vi,j € I(i#j),t <min(T;, T})
(1.11)
i1 € {0,1} Vielle I\{l;} (1.12)
dij € {0, 1} Vi,jeI(i#j) (1.13)
a;; € {0,1} Vi,j € I(i #j) (1.14)
ui(t) el Viel,t<T, (1.15)
vi(t) €V Viel,t <T; (1.16)
pi(t) € P Viel, t<T,. (1.17)

1) Objective function: The objective is to minimize the
total travel time of CAVs driving through a multi-lane freeway
merging section.

2) Multi-vehicle combinatorial constraints: Constraints
1.2-1.4 ensure the orderly traffic flow distribution on the
mainline lanes. Specifically, constraints 1.2 require that the
target lanes for CAVs be selected from the mainline lanes,
which means that each CAV can choose either outside lane
(lane 2) or inside lane (lane 3). Note that, the target lane
choice variable ; ;, [ is defined only for [ € L\ {/1}, thereby
excluding the on-ramp and acceleration lane (lane 1) from
being selected as a target lane. Constraints 1.3 state that d; ;
equals 1 if and only if vehicles ¢ and j choose the same target
lane, and O otherwise. Then, 1.4 indicate that if two CAVs
select the same target lane, they establish a unique driving
sequence.

Additionally, constraints 1.12—1.14 specify that the associ-
ated variables as binary variables.

3) Trajectory Constraints: Constraints 1.5-1.11 are related
to the vehicle’s motion from its initial to the final state,
ensuring that merging and lane-changing manoeuvres are
completed. Constraints 1.5 and 1.6 specify the initial position
and speed condition. Constraints 1.7 and 1.8 define the ter-
minal conditions. Specifically, constraints 1.7 require that the
terminal position is at the end of the merging section, pgny;-
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Fig. 2. The proposed hybrid bi-level control framework.

Constraints 1.8 ensure that each CAV’s terminal passage time
aligns with its lane selection and vehicle sequence decisions,
while also maintaining a minimum time headway h between
consecutive CAVs in the same target lane. Constraints 1.11
prevent collisions at any time step, where O(p;;) € R?
represents the geometric space occupied by vehicle ¢, modeled
as a rectangle centered at the longitudinal position of vehicle
1 along its current lane at time ¢. the space occupied by
vehicle ¢ at time ¢. Constraints 1.9 and 1.10 describe the CAV’s
kinematic equations. Finally, constraints 1.15-1.17 define the
permissible ranges for control inputs, speeds, and positions,
respectively.

In summary, the on-ramp merging task of CAVs involves
strategic decisions for vehicle sequences and lane selection
to minimize total travel time, along with multi-vehicle trajec-
tory planning that ensures safe movements while adhering to
specified target lanes and vehicle sequences.

IV. BI-LEVEL CONTROL FRAMEWORK

To solve the MINLP model (1.1)—(1.17) in real-time, our
method adopts a hybrid bi-level control framework, as illus-
trated in Fig. 2. The upper level introduces a novel Vehicle
Ordering and Lane Assignment Policy Network (VORLA-
PN), which determines the vehicle sequence and lane as-
signment based on initial microscopic vehicle data (i.e., lane
ID, position, and speed). The lower level develops an MPC
planner to generate collision-free trajectories that implement
the decisions made by the upper level.

We use a DRL algorithm to train VORLA, taking each sim-
ulation as a training instance. During each simulation, VORLA
first outputs the vehicle sequence and lane assignment, which
are passed to the MPC planner. The MPC planner then gen-
erates velocity commands for all vehicles at regular intervals
(e.g., 200 ms) until they all pass through the merging section.
The resulting travel time is provided as feedback to VORLA,
serving as reward signals for updating the neural network
parameters via the policy gradient formula. This framework
effectively integrates the rapid inference ability of deep neural
networks with the safety assurance of mathematical models.
The following sections detail the upper-level VORLA policy
network and the lower-level MPC planner.



V. VORLA PoLICY NETWORK

A. Markov Decision Process Formulation

We formulate the problem of determining the vehicle driv-
ing sequence and lane assignment as an |[|-step Markov
Decision Process (MDP), denoted as a tuple (I,S, A, R, T),
where I denotes the set of CAVs, S the state space, A the
action space, R the reward function, and 7 the state transition
function. The key MDP elements are defined as follows:

State: The state at each decision step k, defined as s; =
(X,Ny) € S, comprises two components: the initial CAV
state X and the dynamic lane assignment state Nj. X =
{X (i)}yz‘l contains the information of all CAVs when the
trigger point is activated, where X = [p(®) o) ¢@O]T
captures the longitudinal position, velocity, and lane ID of
CAV i € 1. The lane assignment state Nj = [N}*, N}?|
records the allocation of vehicles to mainline lanes /5 and I3
at step k. Specifically, both NV, ,lf and N ,i? are one-hot column
vectors of length |I|, containing all zeros except for one single
cell. This single cell, set to one, uniquely identifies the most
recently assigned vehicle to the corresponding mainline lane
at this step. For instance, if CAV ¢ was assigned to lane 2 at
step k — 1, then IV, ,iQ would have its i cell set to 1, while the
rest are set to zero.

Action: The action at step k is represented as ap =
(ck, i) € A, where ¢, € Cj, selects one CAV from the set of
available CAVs and I, € Li\{l1} selects a target lane from
the set of permissible target mainline lanes. That is, at each
decision step, only one CAV is chosen and assigned to a target
lane, with this process continuing until all CAVs have been
assigned. It is important to note that the sequence in which
the CAVs are selected establishes the “vehicle sequence”.

The available CAV set C}, is determined by the following
two masking rules:

o Each CAV can be assigned to a target mainline lane once
and only once.

o For CAVs initially in the same lane, vehicle selection
starts with downstream CAVs and proceeds upstream.

The permissible lane set Ly depends on the initial lane ID
of the selected vehicle. Mainline vehicles can choose a target
lane from two mainline lanes (i.e., lanes [; and [5), whereas on-
ramp vehicles are restricted to the outside lane (i.e., lane [5).
Then, the corresponding masks M € Rl and M} € R?*!|
are constructed based on the rules of Cy and Lj to prevent
invalid actions.

Reward: The objective is to minimize the total travel time
for a group of CAVs. Accordingly, the sparse termination re-
ward at the final decision step is denoted by R, = — ., T,
representing the negative of the objective function (1.1). The
reward function is written as:

ke{l,... |1 -1},

0
Rp=14" 2
{_Zz’elTiv k:|I|

State Transition: Executing action ap = (cg,l) on state
s results in the next state sii1 based on T (sgi1|sk,ak).

Specifically, given the action (cy, I ), the lane assignment state
Ny, = [N}, N}?] is updated as follows:

=1
Ni, =5 : 3
k1 {N;i, 141, )

where e, is a one-hot vector with 1 at the ¢} position and Os
elsewhere. At each step, one column is updated because only
a single CAV is selected and assigned to one of the mainline
lanes. If all CAVs have been assigned, the next state is the
terminal state.

B. Sequential Decision-Making Process

Given initial CAV states X, the policy network VORLA
approximates a stochastic policy 7y, which outputs probability
distributions of a solution a. A complete solution, a =
(ai,...,ar), compromises a series of actions ay = (cx, ) at
each step k. Note that cj, represents the selection of a vehicle,
and [ denotes the assignment of that vehicle to a specific
lane. The resulting sequence (ci,...,c|y) forms the driving
sequence for |I| CAVs. The process of generating a complete
a can be factorized into a chain of conditional probabilities:

11|

mo(alX) = [ [ mo(ar| Ny, X) 4)
k=1

This factorization allows the solution to be constructed in-
crementally, with the decision at each step aj depending
on the current state N and X, where N depends on the
previous actions, aj.;—1. Consequently, a sequential decision-
making process is developed to generate each partial solution
ay, iteratively, ultimately building the complete solution a.

The proposed VORLA network comprises a policy network
mg and a baseline value network bg. The policy network g
includes an encoder that generates feature representation for
CAVs and a decoder that produces a series of vehicle-lane
probability matrices using (11). The action sequence a is
determined by sampling from these probability matrices. The
baseline value network bs is employed to reduce variance
and facilitate learning efficiency. Fig 3 illustrates the VORLA
network architecture, which is explained as follows.

1) Feature Encoder: We adopt the standard Transformer
encoder [37] for feature extraction, as detailed in Appendix A.
This encoder takes in the initial CAV states X € RI/I*3 and
attends to information from all CAVs. The resulting vehicle
state embedding H, is represented as:

H, € R = TransformerEnc (X), (5)

where d denotes the embedding dimensions.

2) Autoregressive Decoding: During the decoding process,
the decoder is repeatedly executed, with each step generating
a joint probability distribution of target CAVs and mainline
lanes given the CAVs’ embedding H,, and the lane assignment
states INj. The resulting distribution is used to select the next
CAV and its target lane.

The decoding process begins with lane feature extraction,
using the embeddings of CAVs currently assigned to mainline



Policy Network my

Attention-based 1 u

Vehicle-Lane Probability matrix

CAV 1 CAV |I]
Inside lane 0 0.98
Outside lane 0 0.01

~o _-
~
\\ _

Feature CAV embeddings H, ~ Append
Encoder Key/Value Decoder | Softmax 7t1 - |
kek+1 Y
|1] actions
Masks: M% and M§
Lane embeddings (h;, and b)) | Lane Specified Rewards
Queries Feature Extractor
- Training Loss
Baseline Network b } | g |
— Update my: RL Loss + Entropy Loss
: Feature Encoder ]—-[ MLP® | v
— X [

d

Initial CAV
states

“Update by: MSE Loss |

Fig. 3. The architecture of proposed VORLA network, which incorporates a encoder-decoder crafted policy network and a baseline value network. The
autoregressive decoder constructs vehicle sequences and lane selections incrementally.

lanes as mainline lane features (Step 1). Next, the attention-
based decoder computes a correlation matrix between the
features of candidate vehicles and mainline lanes (Step 2).
The decoder then generates a probability matrix based on this
correlation, and samples it to select a vehicle and a mainline
lane for the current step’s decision. If there are still unassigned
vehicles, the process loops back to Step 1 for the next decision
step (Step 3).

Step 1. Lane feature extractor: Given the lane assignment
states Ny, the two feature vectors hy, [ € {l2,l3}, are selected
from the encoder output H, as follows:

heRY=(N)T-H,, 1¢{lyl3} (6)
which means the state embedding of CAVs currently assigned
to the mainline lanes serves as the corresponding lane state.
When no CAVs have been assigned to a lane, h; is filled with
trainable parameters.

Step 2. Attention-based decoder: Next, we learn the cor-
relation between the features of current mainline lanes and
candidate CAVs. We input the mainline lane features h; as the
query and the candidate CAV features as the key and value in
the attention-based decoder.

The decoder comprises three layers of multi-head attention
(MHA) modules. The MHA module is detailed in Appendix B.

The first MHA layer encodes correlation between each
mainline lane and candidate CAVs, producing h; as follows:

h; € RY = MHA(hy, H, © MY), 1€ {lo,l3}. (1)
where h; denotes mainline lane features, and the candidate
CAV features are obtained through the mask operation H, ®
M kc . The symbol ® represents the element-wise product, and
the mask M € R are broadcast across each column of
H, to extract the permissible CAVs’ features. hj, and h;, are
processed separately, each through a dedicated MHA layer.

Next, we concatenate h;, and hj, into he € R?4 and pass
it through the second MHA layer to produce hj, a fused
embedding integrating the features of the two mainline lanes.

his € R?? = MHA (he, he), )

where h. € R?*? = Concat(hj,, hy,).

After that, the third MHA layer computes the final corre-
lation matrix U € R?>*/l = Concat(U,,, U;,). The elements
of U represent the correlation between the feature vector of
a candidate CAV and that of a mainline lane, computed via
a dot product operation. These correlation values are then
transformed into probabilities, indicating the likelihood of
selecting each candidate vehicle for each mainline lane. The
correlation is calculated as follows:

O] C
MO M) e )
Vd

©))
where hl(sl2) and hl(sl3) are d-dimensional vectors obtained by
splitting hys. The tanh function clips the result within [—C, C)|
(C = 10), following [40]. Mf is used to filter the non-
permissible candidate CAVs according to the masking rules
explained in Section V-A. Also, the non-permissible lanes for
each CAV are filtered out using the mask M kL as follows,

U, € R = ¢ - tanh <

: I _ c _

CR = U 1fmi—.1andm7;—11,61,16{12’%}

—oo otherwise.

(10

where u, ,, mé, and m§ denote the elements of U, M, L and
ME, respectively.

Step 3. Probability matrix generation: We interpret these

correlation values as unnormalized log-probabilities (logits)

and compute the final probability matrix P using a softmax

function. Each element p; ; of P is calculated as follows:
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Hence, the next passing CAV and the associated lane selection
are determined by P € R2* /I,

In sum, the decoder uses the dependencies between lane
situations and candidate CAV features to produce a selection
probability matrix. During the training phase, actions are sam-
pled from this multinomial probability distributions; during the
inference phase, actions are selected greedily.

C. Leader-and-Lane-Specific Credit Assignment

During training, it is important yet challenging to correctly
attribute the sparse termination cost, i.e. the total delay, to a
sequence of actions (i.e., vehicle and lane selections). This
paper proposes a leader-and-lane-specific credit assignment
method to compute return GG at each step, expressed as:

1]
G(Sk,ck,lk) = — T(Ck) + Z T(Ck/) H(lk/ = lk> R
N~ Py
ag

(12)
where action aj, contains two terms: cj and [y, which respec-
tively denote the selected vehicle and target mainline lane at
step k; T'(cy,) represents the travel time of the selected vehicle;
I(lxr = li) is an indicator function that equals 1 solely when
lir equals [j. Equation (12) means that the return G only sums
the travel time cost of the selected CAV and subsequent CAVs
assigned to the same lane, rather than summing the costs of
all subsequent CAVs.

This rule associates an action only with the rewards obtained
afterwards, as prior rewards have no bearing on how good the
action is. Moreover, the rule is consistent with microscopic
traffic flow models, in which the leader’s driving behaviour
can affect their followers, but the followers do not influence
the leader. Furthermore, this rule differentiates the mutual
interactions of vehicles from different lanes. For example,
lane-changing CAVs would impact their following vehicles in
the target lane; otherwise, vehicles in different mainline lanes
have no interaction. Additionally, the assignment of on-ramp
CAVs has a more direct impact on outside-lane vehicles than
inside-lane vehicles.

D. Policy Optimization
The REINFORCE with Baseline algorithm [38] is utilized
to update the policy network my, with a learnable baseline

value network by to reduce the variance of gradient estimates.
The REINFORCE loss, Lgy,, is formulated as follows:

~Ernry [(G(7) = by(X)) - log mo(7)]

where E,. ., denotes the expectation over trajectories 7 =
(s0,ag, 81,0a1,...), i.e., the sequences of states and actions,
sampled from my; G refers to the return, which is calculated
based on (12); b,(X) estimates a expected return for each
instance by the baseline network.

To discourage premature convergence, a negative entropy
loss is adopted as follows:

LrL = 13)

Eemropy = —Entropy(ﬂ'g) = IETNTI'Q Z o (CL|S) 1Og(ﬂ-9 (a|5))‘|

S,aET

(14)

Consequently, the total loss for the policy network g,
denoted as L, combines both the REINFORCE loss and the
entropy loss:

Lr=Lr+c1- Eentropw (15)

where c; is the coefficient of entropy loss. By minimizing
L, the policy distribution 7y is optimized towards minimizing
total travel delay. Regarding the baseline network b, its loss
is defined as follows:

Ly =Erar, [(G(1) = 04(X))?)], (16)

which aims to minimize the mean squared error (MSE) be-
tween the unbiased returns from the environment G(7) and
the estimated baseline values by (X).

Lastly, Algorithm 1 outlines the training procedure.

Algorithm 1 Training process for our VORLA network
1: Input: Training dataset D, batch size B, number of
epochs E, steps per epoch |I].
2: Output: Network parameters 6.
3: for epoch e = 1, E' do
4:  Sample B instances from dataset D.

5 for instance : = 1, B do

6: Set initial state N7 and X for instance <.

7: for step k = 1,|I| do

8 Obtain a probability matrix 7 < 79 (ag|Ng, X).

9: Sample an action ay ~ 7.

10: Transit the next state Ng1.

11: end for

12: Execute the Ilower-level NMPC to implement
target driving sequences and lane assignments
(@1,---,aj;) and to obtain vehicle delays
(Th e 7”]\)'

13: Calculate returns (G, - -, G|y)) based on (12).

14: Obtain estimated baseline values by (X).

15:  end for

16:  Calculate £, based on (15).

17:  Calculate L, based on (16).

18: 6 < Adam(0,VL,)

19: ¢+ Adam(¢p, VL)

20: end for

21: return policy network parameters 6.

VI. LOWER-LEVEL MODEL PREDICTIVE PLANNER

We formulate the problem of short-horizon trajectory gen-
eration as an unconstrained optimization problem, which is
solved by the open-source library LBFGS-Lite [41]. The
objective is to minimize the following cost function:

min _[Je, Ji, Jay Jis Tk, Jp] - A,
where Ui = {ui,i 10" Vi = {1y’ and Py = {pi} Lo
describe the trajectory of CAV ¢ over a prediction horizon
of N time steps. The time interval between steps is set to
0.2 second; A is the weight vector used to trade off each
cost term. The weight vector A is heuristically tuned after

a7



normalization of all cost terms, ensuring that the reciprocal
avoidance, initial, kinematic, and feasibility conditions are all
satisfied. To improve real-time performance, the MPC solver
is warm-started with an initial solution that is dynamically
consistent and near-feasible, allowing faster convergence.

1) Traffic Efficiency J.: To optimize traffic efficiency, we
minimize the cumulative difference between each vehicle’s
speed and the desired speed over the entire time horizon IV,
as defined below.

(vix — D)2, (18)

where v refers to the maximum free flow speed.

2) Target Sequence and Lane J;: The upper level decides
the target mainline lanes and vehicle passing orders, which
consequently determines the target leading vehicle for each
CAV. Hence, MPC must form the minimum spacing between
any CAV i and its target leading vehicle:

N—-1
Jr=")" Uik vik)? (19)
k=0

where ¢ (p; k, Vi k) = min{pr—p; x—v; k-T—do, 0} represents
the penalty for insufficient spacing between CAV i and its
target leader p at any time point. Here, insufficient spacing
refers to a distance less than the product of the follower’s
speed and the minimum time gap 7, plus the standstill distance
dp.

3) Reciprocal Avoidance J,: At any time, two consecutive
CAVs in the same lane should maintain a minimum spacing.
Therefore, the reciprocal avoidance penalty .J, is defined as:

N—
Jo =
k=0

[

Vo (Di ks vig)? (20)

where V4 (pi, ¢, vi,¢) = min{p; — ps ¢ — vt - T — do, 0}. Here,
1, is similar to v;, but p; denotes the current leading vehicle,
while p; represents the target leading vehicle.
4) Initial Condition J;: The starting position and speed of
each CAV are fixed.
Ji = (pio — Piinie)” + (Vi0 — Viinie)” (21)
5) Kinematic Condition Ji: This condition links control

inputs, velocities, and positions at two consecutive time points,
as follows:

N—2
Tk = E:{@%x+1—lmk—wuwﬁﬂ2+
k=0 (22)
Vi k + Uik
(Pik+1 — Pisk — - . At)Q]

where At denotes the time interval. Here, velocities are
linearly dependent on the control input, and positions have
a parabolic relationship with velocity.

TABLE II
VEHICLE PARAMETERS AND HYPERPARAMETERS FOR TRAINING DRLS

Vehicle parameter Value Hyper-parameter Value
Minimum time headway b~ 1.2s Batch size |B| 64
Jam distance dg 10m Learning rate 7y le-4
Maximum speed v 120km/h  Learning rate 74 le-4
Maximum acceleration a 2m/s 2 Entropy weight c1 5e-3
Maximum deceleration b 4m/s—2 Embedding dim d 128

6) Feasibility condition Jy: We limit the value of velocity
and control input within feasible regions.

N-1
Jr = Z Uy (vi,k) + "/}u<ui,k) (23)
k=0
where 1, and v, are respectively defined as:

(v—0)2 v>7u (u—1u)?, u>u

'(/)v = 07 vey '(/Ju = 0, ueu

(v—1v)? v<uw (u—u)? u<u
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VII. SIMULATION RESULTS

Sections VII-A and VII-B describe our simulation settings
and training data generation. Sections VII-C, VII-D, and VII-E
evaluate the efficacy of our approach, our credit assignment
method, and learning techniques, respectively. Section VII-F
presents a case study to illustrate the decision-making process
and the generated trajectories.

A. Simulation Settings

The microscopic traffic simulator SUMO [39] is adopted
to conduct microscopic simulation. The simulated freeway
segment consists of two mainline lanes and one on-ramp,
as depicted in Fig. 4. The mainline lanes extend for 1.7
kilometers, comprising three sections: the upstream segment,
where CAVs are randomly generated; the cooperation segment,
where merging and lane-changing behavior occur; and the
downstream segment, which fully covers the affected areas.

Cooperation segment Downstream segment
300m - 1km g

Upstream segment
400m

Fig. 4. Simulated road geometry.

Table II summarizes the values of vehicle parameters and
the hyper-parameters used for training the DRL methods. The
vehicle parameters include the minimum time headway, jam
distance, speed range, and acceleration range. A minimum
time headway of 1.2 seconds is adopted in this study. Com-
pared to mainline car-following, merging maneuvers require
more conservative spacing to account for uncertainties in
vehicle acceleration, deceleration, and interactions between
merging and mainline vehicles.



B. Training Configuration and Data Generation

The training-related hyper-parameters directly affect the
training process and data volume. Specifically, the model is
trained using a batch size of 64, and each roll-out involves |I]
vehicles and thus |I| decision steps, yielding 64 x |I| training
samples per batch. As the training typically involves several
thousand batches, the total training data volume reaches the
scale of millions of samples. As for the data generation, two
types of datasets are used in this study: one is synthetically
generated, and the other is extracted from real-world dataset.

1) Synthetic Data Generation: Each episode randomly ini-
tializes 15 CAVs along the upstream segment, with 25-30%
placed on the on-ramp, 35-40% on the outside lane, and 30-
40% on the inside lane. The initial time headway between any
two adjacent vehicles within the same lane is randomly drawn
from a uniform distribution between 1.2 and 2.0 seconds.
The initial speeds of mainline CAVs and on-ramp CAVs are
sampled uniformly from 100-120 km/h and 80-104 km/h,
respectively.

2) Real-world Dataset: We extract data from the Entries
and Exits Drone (ExiD) real-world dataset recorded on Ger-
man highways [42], which includes detailed on-ramp merging
scenarios. A total of 1,784 merging cases are extracted, each
capturing the position and speed of vehicles at the beginning
of the merging segment. Among these, 80% of the cases are
for training and 20% for testing.

C. Comparative Analysis
We compare our method with following methods:

e SA-10: Simulated Annealing (SA) is a metaheuristic
method that uses a guided neighborhood search, com-
monly applied to discrete search spaces. Here, it is
employed to search for vehicle orders and lane assign-
ments. SA is executed with a 10-minute time limit (hence
referred to as SA-10).

« BF-10: Brute Force (BF) search over all feasible discrete
decisions, with a 10-minute time limit imposed (hence
referred to as BF-10).

o FIFO: A rule-based method that first rotates CAVs from
the ramp and outside lanes into a shared straight line, and
then orders them given the first-in-first-out (FIFO) way.

o IPPO: Independent Proximal Policy Optimization (IPPO),
where each CAV learns its own policy using ego-centric
observations to optimize individual performance (e.g.,
ego speed and smoothness) [29], [43].

« MAPPO: Multi-Agent Proximal Policy Optimization
(MAPPO), which leverages global observations of neigh-
boring CAVs to learn policies that optimize collective
performance (e.g., average speed) [30], [44].

1) Synthetic Data Validation: We begin evaluating our
method on synthetic scenarios. Table III presents the statistics
results of different methods on 400 instances. The evaluation
metrics include travel delay and computation time. Our method
demonstrates superior real-time performance compared to
rule-based and metaheuristic approaches. In terms of solution
quality, it achieves the lowest mean value of travel delay
(66.8s), significantly outperforming FIFO (93.0s) and SA-10

(92.1s) and slightly better than BF-10 (69.8). In terms of
computation time, our method requires only milliseconds for
network inference. While rule-based methods are faster, they
produce significantly lower-quality solutions. In contrast, other
methods require tens of minutes, making them unsuitable for
real-time applications.

TABLE III
PERFORMANCE COMPARISON

VORLA (our)  FIFO SA-10 BE-10
Travel
668+12.9 93.0+230 92.1+23.0 69.8+8.7
o delay(s) T T T
Computation 0.006 < 0.001 600 600

time (s)

2) Real-world Data Validation: We further evaluate the
proposed method using real-world scenarios. Vehicles are
initialized using the recorded positions and speeds, and the
merging process is then simulated using the proposed control
framework. Table IV presents the travel delay results on
the test set from real-world dataset, comparing our method
with rule-based, metaheuristic, and multi-agent reinforcement
learning methods for cases with different numbers of vehi-
cles (i.e., from 3 vehicles to 15 vehicles). The performance
of the FIFO method decreases as the number of vehicles
increases. SA-10 struggles to find good solutions using its
guided random search. BF-10 can find high-quality solutions
for cases with fewer vehicles by enumerating feasible options,
but its effectiveness diminishes as the vehicle count grows.
In contrast, our method achieves the lowest delay in cases
with both small and large numbers of vehicles (3, 11, 13,
and 15 vehicles). For moderate vehicle numbers (5, 7, and 9
vehicles), the average total delay is only 0.1-2 seconds longer
than that of BF-10. This demonstrates that our method not only
provides high-quality solutions in milliseconds but also scales
effectively to varying numbers of vehicles. Also, compared
with decentralized learning-based methods such as IPPO and
MAPPO, which directly output the acceleration or deceleration
of each CAV at every time step, our method employs a
centralized control framework that abstracts decision-making
into vehicle-lane assignments and ordering. This high-level
coordination enables more structured planning and leads to
consistently better performance.

D. Comparison of Credit Assignment Methods

To demonstrate the effectiveness of our proposed leader-
and-lane-specific credit assignment mechanism, we compare
it with other reward shaping approaches:

o Vehicle-specific reward: Each action is only associated
with the negative travel delay of the selected vehicle.

o Terminal reward: An entire sequence of actions is associ-
ated with a sparse terminal reward, i.e., the negative total
travel delay of a CAV group.

As illustrated in Fig. 5, under different credit assignment
approaches, the policy network converges stably but achieves
different performance. The proposed assignment approach
significantly helps the policy network converge to solutions



TABLE IV
COMPARISON OF TRAVEL DELAY FOR VARYING NUMBERS OF VEHICLES

# of CAVs Travel delay (mean value with standard deviation) (s)
VORLA (our) FIFO SA-10 BF-10 IPPO MAPPO
3 1.6 £1.7 21+1.9 5.7+£6.9 1.6 1.8 24+1.8 23+£1.7
5 2.9+22 41+34 8.8+ 10.0 25+19 3.4+2.1 3.3+2.0
7 4.8+3.2 7.0+6.7 19.1+14.1 4.7+ 3.2 5.7+£2.8 52+3.1
9 7.7+5.7 8.0+5.8 30.5 +20.6 5.7+39 10.2+ 6.6 9.5+5.4
11 16.7 £ 11.5 19.0+ 119 | 46.5+18.1 | 25.4£10.8 17.9+6.9 16.9+5.4
13 20.5+10.2 23.34+11.8 | 85.0+£13.3 | 35.3+14.0 | 22.34+10.1 | 20.8£8.0
15 27.3 +8.6 35.3+£16.2 | 799+£33.5 | 67.2+20.8 | 34.7+11.0 | 30674

with the lowest travel delay. It is noteworthy that the proposed
approach explicitly associates each action with the delays of a
selected vehicle and those subsequently affected. In contrast,
the vehicle-specific approach associates each action solely with
the delay of the selected vehicle. Although the explicitness of
the vehicle-specific approach enables the network to converge
stably to a local optimum, its performance is ultimately
inferior to that of our assignment approach because it fails
to account for the impact of actions on other vehicles. Mean-
while, the terminal reward approach associates each action
with the total delay, meaning that each vehicle’s assignment is
responsible for the delays of all vehicles. However, this makes
the network struggle to learn which vehicles are impacted by
a given action and which are not.

104
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Fig. 5. Learning curves under different credit assignment approaches.

E. Ablation studies

Our DRL method incorporates learnable baseline and en-
tropy regulation techniques. We conduct ablation studies to
assess the effectiveness of these techniques. Fig. 6 displays
the learning curves under three conditions: with baseline and
entropy regulation, without the baseline, and without entropy.

The key observations are as follows: First, the learning
curve aided by the two technologies reaches the lowest cost,
demonstrating their effectiveness in converging to superior
solutions. Second, in the absence of the baseline, variance
increases, adversely affecting the learning process. Lastly,
without entropy regulation, the learning curve exhibits a
pronounced bend after 500 episodes, indicating rapid and
premature convergence.

104 Without baseline network by
—— Without entropy regulation
@ 9+ —— With baseline network and entropy regulation
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Fig. 6. Learning curves for the ablation study of baseline network and entropy
regulation.

F. Case Study

To illustrate the decision-making process and the detailed
trajectories generated by the proposed approach, a case study
involving six CAVs is conducted. The initial positions and
velocities of all CAVs are presented in Table 7.

CAVI CAV2 CAV3 CAV4 CAV5 CAV6
Speed (m/s) 233 229 270 265 300 292
Longitudinal 00 1046 1514 1053 1460 1159

position (m)

Fig. 7 visualizes the vehicle-lane probability matrices gen-
erated during each decision step. The values in the matrices
represent the probability of selecting the next target lane and
vehicle. The vehicle score (V.S.) represents the probability
of selecting a vehicle, calculated as the sum of two lane
scores (L.S.). Each lane score indicates the preference of the
most likely selected vehicle for two mainline lanes. Higher
V.S. and L.S. values correspond to a higher probability of
choosing and assigning the vehicle to the lane. As shown
in Fig. 7 (a), at the first step, CAVS is the first selected
vehicle and assigned to the inside lane. CAV3 has the second
highest vehicle score, making it a strong candidate for the
first selection. Unsurprisingly, at the second step, CAV3 is
then selected and assigned to the outside lane, consistent with
the decision made in the first step. At the third step, both
CAV1 and CAV6 are strong candidates, compared to CAV4,
due to their more downstream positions. The policy network
selects CAV1 first, followed by CAV6 in the subsequent step.
Finally, CAV4 and CAV2 are selected in order, with CAV4
chosen first because of its higher speed and more downstream
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(c) step 3: CAV1 is selected and assigned to the outside lane.
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(e) step 5: CAV4 is selected and changed to the inside lane.

Fig. 7. Attention scores of vehicles and lanes at each decision step

position. Notably, CAV4 changes to the inside lane to avoid
the interference from the two on-ramp vehicles, which is a
preferred decision for optimizing overall traffic efficiency.

Fig. 8 illustrates the longitudinal and lateral position trajec-
tories of these CAVs at different moments, obtained by solving
the proposed method. Circled numbers in Fig. 8 mark time
moments, with circled 1 indicating the starting moment. Also,
Fig. 9 (a) depicts the speed profiles of on-ramp vehicles (CAV1
and CAV2) and the leading outside-lane vehicle (CAV3), while
Fig. 9 (b) shows the speed profiles of lane-changing vehicle
(CAV4) and inside-lane vehicles (CAV5 and CAV6).

VIII. SUMMARY AND DISCUSSION

In this paper, we first mathematically express CAV-based
multi-lane freeway merging control problems, clarifying the
connections between lane selection, vehicle sequencing, and
trajectory planning. We then propose a hybrid bi-level control
approach that combines DRL’s computational efficiency with
MPC’s safety guarantees to optimize vehicle sequences, lane
selections, and trajectories under strict real-time requirements.
Specifically, we frame vehicle sequencing and lane selection
as a multi-step decision-making process and design an upper-
level DRL agent to auto-regressively construct driving se-
quences and lane selections based on prior decisions. Our
lower-level MPC planner replans trajectories at regular in-
tervals to accomplish the upper-level instructions on lane as-
signments and right-of-way priorities. To effectively train our
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(b) step 2: CAV3 is selected and remains in the outside lane.
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(d) step 4: CAV6 is selected and assigned to the inside lane.

CAV6 CAV5

_________ V.A. 0 _@ VA0 @“  LA0O —
cAvVa CAV3
vaA. 0 [ v.A._g__@ LA 1;9_-
Cp.\ﬂo@
S
N2 a
Gt

(f) step 6: CAV2 is selected and assigned to the outside lane.

DRL agent, our new leader-and-lane-specific credit assignment
mechanism associates specific vehicle delays with specific
decisions, thereby distinguishing the mutual influence among
vehicles based on their relative order and lane assignments.
Simulation results show that under our hybrid approach,
vehicle delays are significantly better than those of rule-based
and learning-based methods and comparable to the results of
metaheuristic search methods that require tens of minutes. It
demonstrates our approach’s superior millisecond-level real-
time performance, effectively trading-off solution quality and
computation time. Moreover, whether coordinating several
vehicles or over a dozen, our approach consistently performs
well, showing excellent scalability for real-world scenarios
with varying vehicle numbers. Furthermore, simulation results
show that our credit assignment method does enhance the DRL
agent’s ability to learn a better strategy.

Despite the promising results, this study has following
limitations and suggests directions for future research. First,
the proposed framework assumes fully cooperative vehicle
behavior, whereas real-world traffic involves non-cooperative
vehicles. In such cases, an additional safety emergency mech-
anism, e.g., a constant full-deceleration strategy, can serve
as a fallback to enhance the practical viability. Moreover,
extending the proposed framework to mixed-traffic conditions
would further strengthen its applicability in reality. Second,
the centralized control approach implicitly assumes coop-
eration among original equipment manufacturers, which is
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Fig. 8. Lateral and longitudinal positions of CAVs in the case study.
challenging due to commercial and standardization barriers. APPENDIX A

One promising direction is to adopt a decentralized DRL-
based decision-making framework, which offers greater scal-
ability and practicality under such constraints. Third, the
RSU is assumed to be an ideal infrastructure component. In
practice, communication delays, perception errors, and signal
losses may affect system performance. Moreover, the time
and financial costs associated with installing and maintaining
such infrastructure need careful evaluation in future research.
Lastly, the combinatorial nature of the problem remains a key
obstacle to obtaining the optimal solution. When scheduling
over twenty CAVs simultaneously in multi-lane scenarios, the
extremely large search space makes it difficult to obtain an
effective coordination strategy.

301
=
E25—
k5
a — cavl
& 20
— CcAV2
—— CAV3
151 ‘ ‘ | . | | !
00 25 50 75 100 125 15.0 175
Time (s)

(a) Speed profiles of CAVs assigned to the outside lane.
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(b) Speed profiles of CAVs assigned to the inside lane.

Fig. 9. Speed profiles of CAVs in the case study.

TRANSFORMER ENCODER

The standard Transformer encoder [37] is adapted to take in
a sequence of tokens and produce a representation embedding
of the entire sequence. The encoder consists of /N identical
layers, each of which contains two components: a multi-
head self-attention module and a followed position-wise fully
connected network. Each component’s output is wrapped with
a residual connection layer, followed by a normalization layer,
ensuring stable gradient flow.

APPENDIX B
MULTI-HEAD ATTENTION MODULE

The multi-head attention (MHA) module [37] is a crucial
component of our network. The MHA module takes in a query
source, h? € R, and a key-value source, h*v e RY. Both hY
and h*v are projected H times into different subspaces using
linear layers, where H is denoted as the number of heads. For
each head h € {1,2,..., H}, the query, key, and value vectors
are calculated as follows:

Q= WZh? (B.1)
K, = Whth’v (B.2)
V5, = W) hk, (B.3)

where h? is the query source; h* is the key-value source;
W,? WX and W}‘L/ € R %4 gre learnable weight matrices,
and d;, = d/H. Then, each attention-based head « is
determined through the scaled-dot product operation:

QnKy"
(B.4)

Vdp
The last operation of the MHA module is to concatenate all
heads together:

MHA (h?, R*) Lap) WO (B5)
where W© € R%X4 is the learnable matrix for the output

layer. Hence, the output of MHA aggregates the key/value,
guided by the query.

ayp, = Attention(Qp, Kp, V) = softmax (

= Concat(ay,ag,- -
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