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ABSTRACT

This project considers the problem of aerial swarms search with a
group of agents with limited sensing and communication capabili-
ties distributed over a given domain. This domain is discretized into
unit cells, each associated to a probability and uncertainty of target
presence, thus constructing an information map. Each agent keeps
a local belief of the this information map, which they can update
by moving and sensing their surroundings. We further propose a
conventional communication method that allows nearby agents
to merge their local maps to obtain relevant information about
areas they have not yet visited. Specifically, we treat this collab-
orative task as a decentralized multi-agent path finding (MAPF)
problem and train the agents to make individual decisions via a
policy represented by a deep neural network. The goal of the agents
is to find all the hidden static targets as soon as possible. In this
article, we demonstrate the resulting decentralized search process
in simulation. Moreover, by comparing the result for search with
communication and without communication, we highlight how
collaboration can help improve the agents’ performance.
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1 INTRODUCTION

The rapid growth of digital information, high-speed computing and
the development of affordable unmanned aerial vehicles (UAVs)
with embedded visual sensing make it possible to carry out some
collaborative tasks that can involve hundreds of autonomous robots.
Large-scale multi-robot system can help automate numerous key
civil and military applications such as area surveillance, environ-
ment reconstruction and dangerous area surveys. One such ap-
plication is aerial swarms search for unknown targets, for which
many approaches have been proposed to date. The most straight-
forward way to approach this problem is through geometric, which
is very useful when lacking any a priori information about the
likely positions of targets [1][2]. On the other hand, when such
a priori information is available, decentralized or gradient-based
method can be applied by exploiting the probability distribution
that describes the likely target positions [3][4][5][6]. However, in-
formation gradient is sensitive to noise and can drive agents to
local maxima, which also reduces efficiency. When we want to
make full use of the information and find a more optimal solution
in a long-term way, optimization-based methods can be used [7][8].
Through maximizing the gathered information, agents can work in
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a more efficient way but since these methods are usually central-
ized, they lose scalability to larger teams. In this project, we seek a
decentralized solution to multi-agent collaborative search where
agents have individual beliefs about the world and make individual
decisions.

More specifically, we break the aerial swarms search problem
into three parts. We first formulate the problem from a real environ-
ment into a discretized model. We divide the world into a discrete
two-dimensional map making up of a number of unit cells, and
each cell contains some information comprised of probability, un-
certainty, agent position, and target status. The probability relates
to the likelihood of target existence. The uncertainty represents
how confident we are about the information levels in a given area.
As for the agents, we give each the ability to do several specific
actions to move to an adjacent cell depending on whether they are
allowed to move diagonally. Agents also have some visual and sens-
ing characteristics, and they change the environment and update
their local information map accordingly.

With the problem formulated, we then extend the distributed
RL framework on Pathfinding via Reinforcement and Imitation
Multi-Agent Learning (PRIMAL) from Sartoretti et al. [9] and cast
the search problem as a path planning problem. In PRIMAL, agents
learn a decentralized policy to plan a path and arrive at their goal po-
sitions. Similarly, in our search problem, goals are implicitly defined
as areas with high probability, and agents learn to execute actions
to get them close to goals and search around. Through constructing
a deep neural network that maps agents’ local observation to their
next action, we propose a new decentralized, scalable solution to
multi-agent search.

We finally show how to improve the agents’ search time and
accuracy by relying on explicit communications among agents.
Specifically, we propose to let agents share information that will
allow each other to update their local maps to acquire information
related to areas they have not visited. By rewarding agents for such
helpful communications, agents can learn to cooperate and make
more informed decisions.

The article is structured as follows: In section 2, we introduce
the search related work and MAPF based on deep reinforcement
learning (RL). We formulate the search problem and cast it into a
RL problem in section 3. How we randomize the environment and
build the network are described in section 4. Our communication
method for search is illustrated in section 5. In section 6 and 7, we
list the result of the experiment and present concluding remarks.

2 PRIOR WORK

This section focuses on previous works on multi-robot search meth-
ods, as well as MAPF based on deep reinforcement learning (DRL).
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In this work, we are inspired by existing search methods, and
present a new method that relies on DRL to improve search ef-
ficiency and scalability.

2.1 Search

Multi-agent search is a central robotics problem, which consid-
ers search for different kinds of targets and under different con-
ditions. Many search strategies have been summarized in [10],
which illustrate the underlying theory in single-agent searching
for single or multiple, static or moving targets. Furthermore, col-
laborative search has been drawing researchers’ interests [11][12]
[13][14][15], whose methods have been relying on a variety of
tools such as team-optimal, dynamic programming and distributed
control.

In general, there are two broad classes of search methods, de-
pending on the availability of a priori information about the likely
location of targets. Methods like geometric coverage are applicable
in some situation where no information can be acquired, and agents
move to cover all the area of this region.

However, more advanced collaborative search methods can ex-
ploit a prior information if it available. First, gradient-based method
have been proposed in [1][2][16], from the likelihood of targets,
agents search greedily by driving agents to local information max-
ima. Masoud et al. proposed a PSO-based multi-robot cooperation
method to search targets where they assume target emits a signal
like heat for the robot to sense it and determine a locally favor-
able direction. PSO does not use the gradient of the problem being
optimized, and it does not guarantee an optimal solution. There
are also many other decentralized search strategies. Chung et al.
formulated a multi-agent decision-theoretic of probabilistic search
problem [17]. Furukawa et al. [18] presented a control technique
which use recursive Bayesian filtering to autonomously search and
track multiple targets with distributions and probabilistic motion
models. These methods can not be applied to real-life scenarios
easily with large agent teams, and our work looks for scalable,
decentralized multi-agent search methods to control the agents
searching more intelligently.

2.2 Multi-agent Path Finding (MAPF)

MAPF is an NP-hard problem even when approximating optimal so-
lutions. Here we want to emphasis the decentralized learning MAPF
planner where agents learn their own policy and can be imple-
mented to large-scale multi-agent system easily. Some DRL-based
MAPF decentralized planners show great potential in solving MAPF
problem, for example, Sartoretti et al. [9] proposed pathfinding via
reinforcement and imitation multi-agent learning (PRIMAL), a new
framework for decentralized, reactive MAPF. They showed that
PRIMAL worked well in low obstacle densities situations, which
combined the advantages of distributed reinforcement learning and
imitation learning. As we want to solve the multi-agent search
problem in a decentralized way, such distributed learning based
approaches seem like a good starting point for us to base our work
upon.

3 BASIC DEFINITIONS AND ASSUMPTIONS

Given a real environment with several static targets and some
information about the search domain, we want to use a team of
autonomous mobile agents (e.g., UAVs) to find as many targets as
possible within a limited time. We formulate this task to a mathe-
matical problem and cast this problem to a reinforcement learning
(RL) problem.

3.1 Problem Formulation

We consider a discrete search domain divided into uniform cells. The
size of the domain determines the number of cells, each representing
a fixed area. Without restricting the generality of our approach,
we consider a square region composed of n X n cells to represent
the search domain. The position of each cell in the region can
be represented as [x,y]T. The probability of target existence in
each cell is p(x,y) € [0, 1] defining the 2D probability map, and
uncertainty for each cell is u(x,y) € [0, 1] similarly defining the
uncertainty map. These two maps are referred to as the information
map.

The agents are the only movable object in this region. All of
them are assumed to move in a fixed plane whose size is the same
as the region. In this plane, they must avoid collisions with each
other or obstacles. The positions of the N agents are denoted as
a; = [xi,y;]7, with i = (1,..., N).

Additionally, agents have a sensor footprint which is assumed
to be a circle region I'. Agents can update the information in this
region and stochastically detect targets using this footprint. T is
defined as a 5X 5 matrix (where only a circular footprint is non-zero)
as

0 0 0.1353 0 0

0 0.3679  0.6065  0.3679 0
I'=1| 0.1353 0.6065 1.0000 0.6065 0.1353

0 0.3679  0.6065  0.3679 0

0 0 0.13530 0 0

Values in I represent the probability of detecting a nearby target
relative to the agent’s position (I3 3) at each tiem step. For example,
if a target is beneath the agent, then the agent will always find it
([3,3 = 1), but for slightly further targets, the probability of detection
decreases.

Additionally, agents can update the levels of probability and
uncertainty in their surroundings according to I'y,y. The collected
information in each cell of their sensor footprint are Ap(x, y) and
Au(x,y) as equation 1 and 2. With the agent collecting the infor-
mation, the information in this environment will also decrease
by the same amount. That is, after an agent passing by, if the
probability in a cell is collected by the agent, then it becomes to
P’ (x,y) = p(x,y) — Ap(x,y), and the same for uncertainty.

Ap(x,y) = AkTx,yp(x,y), (1)
Au(x,y) = AkIx,yu(x, y)), )

where k is a coefficient related to world size n, A is a constant
coefficient to control the amount of information removed per time
step (experimentally chosen to be 0.001). That is to say, agents can
detect targets and decrease information contents in each cell of the
region in accordance with their sensor footprint.



3.2 Search as a RL problem

In this section, we cast multi-agent search as a reinforcement learn-
ing problem. To this end, we describe the agent’s observation space
and action space how to calculate the reward for each action.

3.2.1 Observation Space. Agents start their search with a local
copy M; of the global priori information map, where M; contains
the probability map and uncertainty map.

In real-life situations, UAVs cannot observe the whole search
domain by relying on onboard sensing only. What is more, some
area in their field of fiew (FOV) may be blurred. Therefore, we
believe such partial observability of the world with an explicit area
is realistic. Moreover, the limited FOV can reduce input dimensions
in the training process in a neural network, which can help to save
training time and improve generalization to domains with arbitrary
sizes.

Considering the visual system of UAVs, we define their observa-
tion FOV as a square area © (in practice, 11 X 11) centered around
themselves. At every time step, agents can only extract the portion
of their local probability map, uncertainty map corresponding to ©
FOV. In this FOV, agents can see each other and surrounding ob-
stacles. Additionally, we define an explicit area ® centered around
agents and outer area represents the blurred area in their FOV.
Agents can directly sense the environment around them within
® and update the probability and uncertainty in their local maps
before they extract the observation. In this project, we investigate
the effect of various sizes of ® (11 X 11 or 5 X 5) and compare the
results.

The extracted information is reconstructed into one matrix with
five channels below, and each channel contains a 2D 11 X 11 matrix.

o other agents nearby are represented as 1, and empty cells
are considered as 0

e obstacles in their FOV which also contains the area out of
boundary

e location of targets which have been found by any agent

e p(x,y) extracted from their local map, probability levels out
of boundary is assumed 0

e u(x,y) extracted from their local map, uncertainty levels out
of boundary is assumed 0

We also add a 3 X 1 vector of real value containing agent’s position
and the number of remaining targets to help agents know what
is the status of the search task. All these channels and the scalar
construct agent’s observation which help agents determine their
next action.

3.2.2 Action Space. Agents have two action modes containing
moving in the four cardinal directions or adding extra four interme-
diate directions. In mode one, agents can take at most five different
actions based on their current position. These actions correspond
to moving in the four cardinal directions (north, east, south, west)
and staying still. In mode two, they can additionally move to four
intermediate directions so totally nine actions. At each time step,
all the agents execute a single action that is individually decided.
The probability map and uncertainty map of the environment are
then updated based on their sensor footprint I
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3.2.3  Rewards Structure. The reward structure used in this work is
similar to that in many gridworlds where agents are penalized for
each time step, in order to encourage them to finish a given task as
soon as possible.

The probability and uncertainty have a close relationship to
the target position, which means collecting more information is
correlated to finding more targets. We introduce a reward from
collecting information to encourage agents to explore the world and
help them learn how to locate and find targets. We also introduce a
collision penalty to train agents to move around each other safely.
For finding a targets, we give agents a relatively high reward. The
sum value of all these rewards listed in table 1 will be the total
reward at each time step.

The Collect Information reward R;; is calculated as below to
keep R;, relating to the amount of information an agent collects
within their sensor footprint at each time step:

5 5
Mp =" > Ap(x.y), (3)
x=1y=1
5 5
My =" > Aulx,y), ()
x=1y=1
Rin = E(My + M), )

where the £ is a constant coefficient. By normalizing the reward R;p,
the final cumulative reward for one episode can be kept approx-
imately to a constant, thus helping stabilize the training process
and allow comparisons between different training runs.

Table 1: The Reward Structure

Actions Reward
Move(N/E/S/W/None)  -0.05
Agent Collision -0.2
Find Target +10
Collect Information Rin

4 POLICY REPRESENTATION

With all the assumptions defined in section 3, this section details
how we randomize the environment maps as well as construct the
neural network used to represent the agents’ policy.

4.1 Environment

As one of the essential structures where agents learn their collabora-
tive policy, we here show how these information of the environment
are randomized during training.

4.1.1 Episode. When we train the agents, we will create many
episodes until the policy converges. If agents find all targets or time
step counts to 256, we define it as the termination of an episode. At
the beginning of each episode, we create a new random environ-
ment.
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4.1.2  World map. The world size is set to be a random number
within [20, 128] to vary the difficulty of search task. For larger world,
agents should cover more areas to find the targets. Agents need
to learn how to work collaboratively in different world size. The
number of agents, on the other hand, is not changed and remains
N=8 during training.

4.1.3  Probability Map and Uncertainty Map. As the only informa-
tion which is related to target location available for agents, we
randomize these maps at the beginning of each episode.

We want to use a multi-model map with several local maximas
to represent the information, so we create a map containing several
Gaussian distributions. Considering the world size n in the previous
section, we add m (m € [16,32]) Gaussian distributions into the
map. For each distribution, the value in each cell of the discrete
map can be calculated as equation 7 below:

1 (x-xm)® 4 (=#ym)® _ 20 (x=pxm) (4=1Ym)
e 2(1—p%") o'}z(m o'%,m oXmoYm
fm(x,y) = ,

2
20Xmoym1— Pm

(6)
where px, and py,, are the mean of the distribution, which also
represents the position of the maximum in this distribution; pp,
is correlation between X and Y; a)z(m and a%m express the area of
the distribution. We set the variance for the probability map to a
random number (0, 10n) related to the world size n.

The resulting probability map might still contain areas with near-
zero levels, which we would like to avoid to encourage exploration
of the whole domain, thus we add a baseline with 7 percent of the
sum probability and evenly allocated it to every cell in order to
encourage the agent to explore more in our training process.

Furthermore, we normalize this probability map using equation
7, so all the probability sums up to 1, and each cell is represented
as p(x,y) in equation 7 as:

P(ey) = s (1—n>2f<x y>+"2' L
=1
u9) = s Zﬁ(x, W) ®
i fi4
where fi, = X7 y 1 Jm(x,y). The uncertalnty map is created

in the same Way as the probability map except that the variance of
uncertainty map is (0, 20n) and does not have a baseline uncertainty
level. The u(x, y) is formulated in equation 8.

The probability and the uncertainty maps are shown in Fig.1(a)
and 1(b).

4.1.4 Targets. We distribute a random number j of static targets
on the map (in practice, j € [8, 16]). Our goal there is to randomly
place targets by relying on both the probability and uncertainty
maps. We rely on a two-stage system: first, we randomly sample
a tentative target position (x, y) according to the probability dis-
tribution p(x,y) over the domain. Second, we perform a uniform
random draw, and place the target at (x, y) if that draw is smaller
than 1 —u(x, y) (i.e. larger local uncertainty decreases the probabil-
ity a target is placed). Otherwise, we sample a new tentative target
position (x’,y”). We repeat the process until all targets are placed.
This process ensure the location of the targets is coherent with the

(a) Probability Map

(b) Uncertainty Map

Figure 1: Two kinds of information map. The blue/purple
maximum area represents the high probability or uncer-
tainty

a prior information in the agents’ information maps, allowing them
to learn to perform informed individual decisions.

4.2 Network Structure

We use a deep neural network to approximate the agent policy,
which maps an agent’s observation to the agent’s next action. This
network takes inspiration from VGGnet [19] and extends our prior
works on distributed learning for MAPF [20]. Our network is mainly
made up of a 6-layer convolutional network, two max-pooling lay-
ers with several 3 X 3 kernels between each, five full connected
layers, and a long-short term memory (LSTM) cell. The structure
is in Figure 3. To update the neural network, we extend asynchro-
nous advantage actor-critic (A3C) algorithm [21] shown in Figure
2, where agents interact with environment individually and then
update the global network.

Global Network
Policy Ti(s) ,\ Vi) |

y
Input (s) U

& o9 o9 &9
w» - w9

Worker 1 Worker 2 Worker 3 Worker n
¢ ¢ ¢ ¢

AT —

Figure 2: Diagram of the A3C architecture [22]

The inputs to the neural network are agents’ observed informa-
tion contain two separate parts, matrical and scalar information,
as mentioned in section 3. These two parts of inputs are processed
independently and simultaneously, then concatenated together for
processing in the last layers of the network. The concatenation



of processed inputs is passed through two full-connected layers
and an LSTM cell. The output layers consist of five (or nine) policy
neurons with softmax activation which produces the probability of
all the actions.

In the training process, the policy, value outputs are updated in
batch mode when an episode finishes. What we want is to minimize
the loss L, through updating the value to match the total discounted
reward Ry as:

k
Ry = Z )/irt+ia )
i=0
T
Ly = > (V(0r:0) = Re). (10)
t=0

We use advantage estimates rather than just discounted returns,
which not only allows the agent to determine how good its actions
were but also how much better they turned out to be than expected.
The advantage function is defined as A (o, as; 6). The policy loss
L, is used to obtain gradients and update the neural network. We
add an entropy term H(7(0)) to policy loss, which helps to decrease
premature convergence. The equation is as follows:

k-1

A01,a0) = D Y reai + YV (0 0) =V (0130), (1)
i=0

T
Ly =0y -H(x(0)) - Z log (P (a¢|m,0;60) A(or,ar;60)).  (12)
=0

5 COMMUNICATION

To improve performance when the agents carry out collaborative
task, we propose a communicate mechanism to help the agents
acquire information about areas they have never visited.

5.1 Communication Principle

We define a communication area whose size is the same as the
sensor footprint I' (5x5 around the agent’s position). Agents are
only able to communicate with other agents inside this communi-
cation area. Each agent has a local information map M;. During
communication, agents exchange their local map with each other.
The minimum probability and uncertainty in each cell of agents’
local map M; can represent the most recent information they have
about the environment, because at each time step, agents can collect
information from the environment which decreases these levels in
their local maps. The smaller the value in their local map M;, the
closer this value is to the "true value". Therefore, for each map in
M; we formulate the communication process as equation 13:

Mi[p(x,y)] = min(Mi[p(x, )], M [p(x, y)], ... M [p (%, ) D),
(13)

M;ilu(x, y)] = min(M; [u(x, y)], Mic[u(x,y)], ... Mie_p [u(x, 9)]),
(14)

where k,k — 1, ...,k — n represents nearby agents’ ID, and the in-
formation Through this approach, agents can acquire the latest
information from the group of neighbor agents and update their
local maps. Example changes in an agent’s local information map
during communication is shown in Figure4(a) and Figure4(b).
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5.2 Reward Modification

Every time an agent communicates with others, total probability
and uncertainty in their local maps will be updated by AM,, and
AM,, with:

M:
M=

AMp = (Mpo[p(x.9)] = Ma[p(x. ), (15)
x=1y=1

AMy = ) 3" (Miolu(x.y)] = Mu[u(e ), (16)
x=1y=1

where M;o, Mj1 represent the agent’s local map M; before communi-
cation and after communication. To encourage the agents to carry
out more useful communication and get more AM, we add a reward
Reomm to reward structure Table 1. This communication reward
Rcomm can be computed at each time by equation below.

1
Reomm = 5 7(AMp + AMy) (17)

where the 7 is a coefficient.

6 RESULTS

In this section, we illustrate training details and results of our DRL
search controllers. We test four different models of our controllers
with different numbers of agents under the same set of random
environments. Additionally, we compare the search results of our
method with other controllers like information surfing in [5][6] to
demonstrate the superiority of our method.

6.1 Training Details

For our DRL controllers, we have trained four different models
under the assumption and definition we have in section 3 and 4,
containing the large explicit area model, small explicit area com-
munication model, small explicit area no communication model
and diagonal action model. In each model, we only change the
explicit area or whether communicating or whether they can move
diagonally, which makes the results easily to compare.

6.1.1  Performance Metric. During the training process, we record
some key data to represent the performance of different models.
We define them as follows.

e Average search time L: It is average time the agents use to
find all the targets. It has an upper limit at L = 256, which
means agents fail to finish at completing the search task.

e Reward R: The reward value is accumulative in every episode,
which sums agents’ action rewards at every step throughout
each episode.

e Communicating frequency F: Every time two agents ex-
change their local information maps, the communication
frequency increases once. This value represents how many
times the agents communicate with others in one episode.

e Information collection per step M: Agents will collect some
amount of information shown in equation 3 and 4 at each
time step, and M is the mean of M,, or My, for each time step.

6.1.2  Different DRL Models. Next, we introduce the details of our
DRL controller. We train a benchmark model model A with the
largest explicit area ® = 11 X 11, and no communication between
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Figure 3: The neural network structure
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Figure 4: Visualization of communication. Red areas repre-
sent high probability, and blue areas represent high uncer-
tainty. We draw each agent as a purple round. Targets hav-
ing been found are the brown square, and the remaining
targets are the green square. Local information map of the
agent near the upper boundary is (a), after communication,
the color in many areas of the map changes to white, which
means no information is here anymore.

agents. The other parameters are the same as those described in
section 4. The size of the agent’s explicit area is the same as its
FOV, which means information in each cell of agent’s observation
is equivalent to the true levels. This model is expected to perform
best in general.

In order to measure the performance improvement from com-
munication, we reduce the agent’s explicit area ® from 11 X 11

to 5 X 5. This model name is model B. In this model, information
within the agent’s explicit area is still up to date, but the outer
area of its observation may be outdated. Although agents cannot
obtain all the latest information directly from the environment,
they can use communications to obtain more reliable information
about outdated areas from other agents. In this way, we hope that
agents can learn to cooperate and exchange their local maps to get
more reliable information.

In addition, we define a model C, whose parameters are the same
as those in model B, except that no communication happens. In
order to know the levels of communication compared to model
B, we still count the communicating frequency F to record the
total times that agents meet others within the communication area
(sensor footprint). This model is expected to be the worst.

Furthermore, we add a diagonal movement model where agents
can move diagonally to increase the scalability in real scenarios.
We also add the communication mechanism. Compared to model
B, we only change it to action mode two to allow agents to move
diagonally.

For each model, we trained about 9000 episodes until the reward
R converged. Through the reward curve in Figure 5, we can find
the policy nearly trained after about 6000 episodes.

100 ——Model A H
—— Model B
5 Model C
—— Model Diagonal |

L L L L L L
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Episode

Figure 5: Reward curve for each configuration

6.1.3 Information Surfing. We also mix several search methods
based on decentralized Bayesian and gradient-based as the infor-
mation surfing method in order to compare with our DRL method.
We use several vector containing the gradient direction and agent
force to produce the agent nex action. The gradient help to agents
to find the local minima, and the agent force base upon Coulomb’s
law of electrostatic force to avoid agent collision.



6.2 Results of Training

In this section, we analyze the key data from the models mentioned
in the previous section. The average search time L, information
collection per step M and communicating frequency F are relatively
shown in Figure 6.

The average search time directly reflects the success rate during
training process. The smaller the L, the higher the success rate of the
policy (i.e., all targets were found quickly). For these four models,
the model diagonal has the shortest average search time compared
with other models, because agents can learn to move a longer dis-
tance at each time step. The second shortest is model A, where
agents have more accurate information in their observations. Com-
munication model B is also superior to no communication model C,
which confirms that agents benefit from the communication.

Comparing the information collection M and average search
time L in Figure 6, we can easily notice that when agents collect
more information at each time step, they can finish the episode
sooner, which means that agents finding a target is closely related
to information they collect, as expected.

From two models with communication and two models without
communication, we find that the communicating frequency has
increased significantly in model B and model diagonal. In both mod-
els, agents prefer to communicate with other nearby agents, which
also helps them to collect more information and find targets faster,
although only marginally.

We can draw the following conclusion: Agents can make a good
use of the information to find targets, and if the input of the neural
network (the agent’s observation) contains more accurate informa-
tion, the agent can make better decisions through policy. What is
more, communication can help agents to obtain information if they
only have a small explicit area.

6.3 Result of Testing

In order to validate the performance of our model in different
environments, we randomly create 3,000 maps containing different
numbers of agents and targets and information maps. The details
are shown in Table 2. For each map, we test the policy for several
times and record the percentage of found targets to the total number
of targets.

In our test, we want to avoid unrealistic cases involving too high
agent densities over the domain, thus we set some restrictions, for
example, in a map with world size n = 20, the number of agents N
can only be lower than 32, similarly, for n = 40 we have N < 64, for
n =80 N < 128, and for n = 160 N < 256. The output of the policy
is a matrix containing the activation level for each of the five/nine
actions. We repeat the same search scenario 5 times. What’s more,
for these 3000 maps, we also implement information surfing (and
geometric coverage) to compare with our DRL method.

Table 2: The Test Configuration

World Size n

Number of Targets N 4 8 16 32
Range of Distributionsm 8 16 32 64

20 40 80 160
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Figure 6: The average search time L, information collection
per step M and communicating frequency F of the four mod-
els.

For each map set, the average percentage of found targets using
four DRL search controller models are listed in Table 3. We particu-
larly show the result when n = 160 in Figure 7. The comparison of
our DRL method and information surfing is shown in Figure 8.

Through the testing result of the four models, we can make
several conclusions. Firstly, our DRL search controller realizes more
than 95% target found percentage in a limited time if the number
of agent is sufficient.

Secondly, the policy using communication (model B and model
diagonal) are better than no communication policy (model C). Com-
munication can help agents obtain more reliable information from
the observation, but only marginally. From results of testing, agents
can find 3% more targets than model B.

Additionally, noise can also help to improve the performance.
When the number of agents is relatively large (N > 32), the com-
munication model even has a better performance than large explicit
area model A. We believe this can be explained by a simple example,
an agent is searching around an high information area in environ-
ment. If they miss a target, the information around the target will
still be decreased by the agent’s passage. When another agent comes
here, this second agent will observe a potentially lower information
level, and might not search the area as thoroughly, thus making
the target increasingly difficult to find, so this missing target is
hard to be found. On the other hand, in the communication model,
outdated information can sometimes act as noise on top of the
agents’ observations, stimulating other agents continue searching
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Table 3: Testing result by percentage of found targets

Model A | n=20 n=40 n=80 | n=160
N=1 0.5190 | 0.3248 | 0.1436 | 0.0608
N=2 0.6610 | 0.5118 | 0.3040 | 0.1189
N=4 0.7815 | 0.7815 | 0.5075 | 0.2209
N=8 0.9220 | 0.9298 | 0.7159 | 0.3863
N=16 0.9875 | 0.9838 | 0.8884 | 0.6005
N=32 0.9940 | 0.9900 | 0.9484 | 0.7851
N=64 NaN | 0.9923 | 0.9723 | 0.8976

N=128 NaN NaN 0.9858 | 0.9443
N=256 NaN NaN NaN 0.9608

Model B | n=20 n=40 n=80 | n=160
N=1 0.5110 | 0.2923 | 0.1493 | 0.0616
N=2 0.6265 | 0.5050 | 0.2908 | 0.1153
N=4 0.7535 | 0.7678 | 0.4639 | 0.2014
N=8 0.9165 | 0.9053 | 0.6938 | 0.3664
N=16 0.9890 | 0.9775 | 0.8703 | 0.5729
N=32 0.9945 | 0.9890 | 0.9580 | 0.7871
N=64 NaN | 0.9928 | 0.9893 | 0.9219

N=128 NaN NaN 0.9927 | 0.9720
N=256 NaN NaN NaN 0.9878

Model C | n=20 n=40 n=80 | n=160
N=1 0.5320 | 0.2878 | 0.1551 | 0.0531
N=2 0.6690 | 0.4655 | 0.2703 | 0.0975
N=4 0.7660 | 0.7430 | 0.4478 | 0.1806
N=8 0.9240 | 0.8790 | 0.6551 | 0.3383
N=16 0.9700 | 0.9538 | 0.8323 | 0.5336
N=32 0.9615 | 0.9793 | 0.9241 | 0.7484
N=64 NaN 0.9783 | 0.9601 | 0.8831

N=128 NaN NaN 0.9679 | 0.9356
N=256 NaN NaN NaN 0.9520

Model Diagonal | n=20 | n=40 | n=80 | n=160
N=1 0.5995 | 0.3415 | 0.1859 | 0.0711

N=2 0.7025 | 0.5815 | 0.3175 | 0.1400

N=4 0.8130 | 0.8230 | 0.5446 | 0.2532

N=8 0.9370 | 0.9445 | 0.7589 | 0.4576
N=16 0.9860 | 0.9728 | 0.8930 | 0.6598
N=32 0.9915 | 0.9823 | 0.9473 | 0.8364
N=64 NaN | 0.9875 | 0.9745 | 0.9353
N=128 NaN NaN | 0.9858 | 0.9618
N=256 NaN NaN NaN | 0.9778

around. This noise helps to decrease the number of missed targets
and improve the performance.

When we compare our DRL method with information surfing,
our DRL search controller performs much better. In information
surfing, agents just greedily move towards the direction where the
information seems to increase, but they are easily stuck in high
information area until they collect all information. This method
also drives agents to local maxima, which is hard to improve.
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Figure 7: Average percentage of found targets for different
quantity of agents in a 160 X 160 map
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Figure 8: Comparison of average percentage of found targets
between information surfing and DRL method

7 CONCLUSION

In this article, we propose an approach combining reinforcement
learning and the probability models to drive agents to make deci-
sions independently and search efficiently over a domain, which
can also be implemented in real-life scenarios easily. Through com-
paring the results, we conclude the communication leads to a better
performance in this collaborative search task.

Our approach also have some drawbacks, in our problem formu-
lation, the (randomized) positions of the targets depends to a large
extent on the information map. Therefore, the agent’s behavior
can also be regarded as searching high probability area in their
FOV. In real-life situations, if we do not have information or only
incorrect information about the search domain, our approach will
likely behave poorly.

Secondly, agents have an individual map in their own memory, of
which they can only extract information within their FOV at each
time step. Therefore, our approach does not allow agents to fully
utilize their local information map, e.g., to make longer-term deci-
sions about their paths in the domain. This is also a disadvantage
for our search controller.

To improve this disadvantages, we started to conceptualize an
approach to use an attention mechanism [23][24][25]. With this
mechanism, agents can choose where to place their limited FOV



over their whole information map. Then they can get more infor-
mation which is no longer limited in the area around them and
make decisions more pertinently.
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