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ABSTRACT
In this article, we present a control method that combines Central
Pattern Generators (CPGs) with visual servoing for a legged robot.
We implement this control strategy on two different legged robots
to track a target in different scenarios. We propose two methods for
onboard image processing, one based on conventional computer
vision and one on deep learning. The locomotion of the robot is
generated by an onboard CPG framework inspired by vertebrate
animals repetitive (cyclic) movements. A vision system acts as
the brain of the robot, processing the information collected by an
onboard camera, and generates higher-level control commands to
the CPG so that the robot can adjust gaits by perceiving changes in
the external environment.

KEYWORDS
legged robot, central pattern generator, neural networks, visual
servoing, hardware experiments

1 INTRODUCTION
Creatures in nature possess very advanced neural control systems
and body structures after billions of years of evolution. They can
generate coordinated and flexible gaits with feedback from their
different senses to walk on various complicated terrains. As the
most important and most complex sensory modality, vision plays
a vital role in perceiving external environments for creatures [1].
Inspired by creatures, there is a wide interest in developing better
locomotor skills based on visual feedback from onboard cameras
for legged robots, thereby improving the performance of robots in
real-life deployments such as search and rescue as well as mapping
and explore dangerous areas where human should not venture [2]
[3].

Legged robot locomotion mechanisms, mostly inspired by ver-
tebrate, are very successful in moving through different kinds of
terrain [4]. The rhythmic locomotion of vertebrate is usually gen-
erated by biological neural circuits in their spinal cord referred
to as Central Pattern Generators (CPGs) [5]. CPGs of animals can
produce rhythmic motor behaviors such as walking, swimming,
flying, and breathing in the absence of sensory input from higher
levels in central nervous system [6]. Inspired by vertebrate, CPGs
based motion control have been widely used for generating gait for
legged robot [7] [8] [9] [10] [11].

Acting as the robot’s spinal cord, CPGs produce fast and rhyth-
mic commands, and various sensors perceive the surrounding envi-
ronment as sensory organs of the robot. In particular, visual feed-
back control, usually called vision-based control, has been intro-
duced into robotics systems to increase flexibility and intelligence

Figure 1: Hexapod robot with a camera onboard

of robot due to the rapid development of image processing [12].
In this work, we use an onboard camera as the sensory organ of
the robot to provide visual feedback to CPG model. Our robots can
detect, track, and locomote to a target of interset based on visual
feedback. In image processing part, we present two different ap-
proaches which include conventional computer vision based on
color segmentation and a deep-learning method based on the YOLO
(You Only Look Once) network. To compare these two methods, we
perform experiments on two robots respectively. Due to onboard
computation limit, we demonstrate each of these methods on a
different hardware.

In this article, we develop a close-loop control model with CPGs
and visual feedback for a legged robot. To be more specific, the
robot can track a given, potentially moving, object in a complex
environment in real-time. The main implementation principle of
this model is to adapt the parameters of the CPG model according
to the perceived changes in the external environment through
the visual feedback from an onboard camera. The hexapod robots,
composed of a main body and six articulated legs, are used as
experimental platforms in our work.

The structure of this article is as follows: Section 2 presents some
previous works about CPG-based controllers and visual feedback
control. Section 3 introduces our CPG model and describes the algo-
rithms we used for visual servoing. In section 4, we conduct some
experiments based on simulation and robots. Section 5 discusses
the experimental results, analyses the performance of our model
and discusses future works. Finally, section 6 summarizes our work.



Ge, et al.

Figure 2: Central Pattern Generator (CPG) model shown to
converge to the same limit cycle from different initial posi-
tions (different colors) with 𝑎 = 1.5, 𝑏 = 0.8, 𝜔 = 1, 𝛾 = 0.5.

2 BACKGROUND
CPG-based controllers for legged robots have been increasingly
used in robotics [13] [14] [15] [16]. In particular, Righetti et al. pre-
sented a CPG model using coupled oscillators for the control of
quadruped locomotion [17]. Recent works by Sartoretti et al. pre-
sented a close-loop method to combine inertial feedback with CPG
model for the control of body posture during legged locomotion
on unstructured terrain [18]. Our work is based mainly on these
two previous works [17] [18]. By changing the parameters of the
CPG model, sensory inputs from higher-level control system can
be used to adapt the gait generated in real-time.

A few works have proposed to combine CPGs with visual-based
control by fuzzy logic controller [19] [20]. Some researchers have
developed vision-based control systems by using camera informa-
tion to track a target or perform general navigation [21] [22]. There,
Hough transform or other feature extraction method are needed to
identify object or scenes, and these methods are particularly limited
in unknown environments. With the rapid development of deep
learning, some researchers are interested in combing CPG-based
visual control with neural networks [23] [24] [25].

3 VISUAL SERVOING APPROACH
3.1 CPG MODEL
There are different methodologies to create a CPG model to ob-
tain cyclic outputs that can be used to produce rhythmic motor
patterns such as swimming, breathing or walking. For example,
nonlinear equation [26], artificial neural networks [27], topology
[28], etc.. In this work, we rely on a dynamical-system approach
to CPGs, in which the pattern generators are expressed as a set of
coupled oscillators. Then, we independently control the phases of
the oscillations to generate different gaits of the robot. Therefore,
establishing the mathematical model of the oscillator is the basis
for controlling legged robot locomotion by CPG framework. The
mathematical CPG model we used is based on previous works of
Righetti et al. and Sartoretti et al. [17] [18].

We build our CPG model for a hexapod robot. The output values
of the oscillators directly represent the joint angles of key articula-
tions of the robot. In hexapod joint space, 𝑥 (𝑡) = [𝑥1 (𝑡), 𝑥2 (𝑡),
𝑥3 (𝑡), 𝑥4 (𝑡), 𝑥5 (𝑡), 𝑥6 (𝑡)] was used to present the rotation angles of

shoulder joints in the horizontal plane, and𝑦 (𝑡) = [𝑦1 (𝑡), 𝑦2 (𝑡), 𝑦3 (𝑡),
𝑦4 (𝑡), 𝑦5 (𝑡), 𝑦6 (𝑡)] represent the rotation angles of shoulder joints
in the vertical plane. We define the trajectory of each shoulder joint
(𝑥 (𝑡), 𝑦 (𝑡)) as a limit cycle. In order to make the limit cycle variable,
we represent it as ellipse [18]:

𝐻 (𝑥𝑖 , 𝑦𝑖 ) =
���𝑥𝑖
𝑎

���2 + ���𝑦𝑖
𝑏

���2 , (1)

where 𝑎 is the semi-major axis of limit ellipse and 𝑏 the semi-
minor axis of limit ellipse (the maximum horizontal and vertical
movements of the shoulder joint are a and b respectively). The step
height of the robot can be controlled by adjusting 𝑏, while the stride
length can be controlled by adjusting 𝑎.

Using Eq.(1), we express the simple 2D oscillators as:{
¤𝑥𝑖 (𝑡) = −𝜔 · 𝜕𝐻𝑦𝑖

¤𝑦𝑖 (𝑡) = +𝜔 · 𝜕𝐻𝑥𝑖
, (2)

where 𝜔 is the angular speed, and 𝜕𝐻𝜁 = 𝜕𝐻
𝜕𝜁

(𝑥𝑖 (𝑡), 𝑦𝑖 (𝑡)).

However, this simple model only exhibits that the oscillators
behavior is pure rotation around the origin at a constant radius. To
make a fixed-amplitude cyclic motion, we add a constant dissipation
to the limit cycle:{

¤𝑥𝑖 (𝑡) = −𝜔 · 𝜕𝐻𝑦𝑖 + 𝛾
(
𝜇2 − 𝐻 (𝑥𝑖 (𝑡), 𝑦𝑖 (𝑡))

)
· 𝜕𝐻𝑥𝑖

¤𝑦𝑖 (𝑡) = +𝜔 · 𝜕𝐻𝑥𝑖 + 𝛾
(
𝜇2 − 𝐻 (𝑥𝑖 (𝑡), 𝑦𝑖 (𝑡))

)
· 𝜕𝐻𝑦𝑖

, (3)

where 𝜇 denotes the radius of circular limit cycle, 𝜔 denotes the
speed of gait cycle, 𝛾 denotes the forcing strength. For rhythmic
motion on hexapod robot, the limit cycle should always converge
to a fixed-amplitude limit cycle, regardless of the initial position of
the oscillator. The parameter 𝛾 controls the speed of convergence
to the limit cycle, which also plays a role when switching between
different gaits.

To control the locomotion of a hexapod robot, the coupling
between the six legs is crucial. Based on [17], we consider the phase
coupling between legs by adding a coupling term in the y-part of
the oscillator model :



¤𝑥𝑖 (𝑡) = − 𝜔 · 𝜕𝐻𝑦𝑖 + 𝛾
(
𝜇2 − 𝐻 (𝑥𝑖 (𝑡), 𝑦𝑖 (𝑡))

)
· 𝜕𝐻𝑥𝑖

¤𝑦𝑖 (𝑡) = + 𝜔 · 𝜕𝐻𝑥𝑖 + 𝛾
(
𝜇2 − 𝐻 (𝑥𝑖 (𝑡), 𝑦𝑖 (𝑡))

)
· 𝜕𝐻𝑦𝑖

+ 𝜆
∑
𝑗

𝐾𝑖 𝑗
(
𝑦 𝑗 (𝑡) − 𝑐𝑦,𝑗

) , (4)

where 𝐾 in Eq.(4) is the coupling matrix, which defines the gait by
setting the phase relationship between six legs.

In order to allow the model to be applied to different hexapod
robot platforms, offsets were added on each joint by modifying
Eq.(1) as:

𝐻𝑐 (𝑥,𝑦) =
���𝑥 − 𝑐𝑥

𝑎

���2 + ���𝑦 − 𝑐𝑦
𝑏

���2 , (5)

where 𝑐𝑥 is the offset in horizontal plane, 𝑐𝑦 is the offset on vertical
plane. By changing 𝑐𝑥 and 𝑐𝑦 We can adjust the plane where the
limit cycle lies, so that it can adapt the hexapod morphology. The
final CPG equation used in this work reads :
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(a) (b) (c) (d)

Figure 3: Object detection with two methods. (a) Original Frame: A red box and a green box are placed on the laboratory desk.
(b) Red color segmentation based on HSV. (c) Visualized output of the color detection algorithm. (d) Visualized output of the
deep-learning algorithm.


¤𝑥𝑖 (𝑡) = − 𝜔 · 𝜕𝐻𝑦𝑖 + 𝛾

(
1 − 𝐻𝑐𝑖 (𝑥𝑖 (𝑡), 𝑦𝑖 (𝑡))

)
· 𝜕𝐻𝑥𝑖

¤𝑦𝑖 (𝑡) = + 𝜔 · 𝜕𝐻𝑥𝑖 + 𝛾
(
1 − 𝐻𝑐𝑖 (𝑥𝑖 (𝑡), 𝑦𝑖 (𝑡))

)
· 𝜕𝐻𝑦𝑖

+ 𝜆
∑
𝑗

𝐾𝑖 𝑗
(
𝑦 𝑗 (𝑡) − 𝑐𝑦,𝑗

) . (6)

In this project, the step size and steering direction of the robot were
controlled by changing the parameters 𝑎 and 𝑏 in Eq.(5). That is, we
allow a higher-level controller to send commands to the CPG based
on information obtained from visual feedback from the onboard
camera. In detail, 𝑎 is used to adjust the stride length of each step
and 𝑏 is used to change the height of each step.

3.2 Image Processing
This section introduces the method to extract information from the
environment by processing images taken from the onboard camera,
and giving a high-level command to the CPG model presented
in the previous section. To meet the needs of intelligent control,
we present two different approaches for image processing. The
first approach is based on conventional computer vision, while the
second one is based on recent deep-learning advances.

3.2.1 Object Detection Algorithm. To achieve real-time and high
accuracy control, our object detection algorithm should satisfy
two conditions: high accuracy of the result, and real-time detec-
tion speed. The speed is essential for a rapid response of a low-
computing onboard processor on a robot. According to different ap-
plication scenarios, we present two algorithms used in this project.

Conventional Computer Vision. For relatively simple scenarios,
the color of the target is significantly different from the background.
Segmentation based on color gives good performance in identifying
objects in an image. Additionally, compared with deep-learning
method, color-based segmentation is computationally inexpensive.

The basic principle of the algorithm is to rely on thresholding to
only keep regions of an image that have a high amount of a color
of interest. This way, the background as well as other objects are
filtered out and the frame with only the target is obtained as shown
in Fig.3 (a) (b) (c).

The frame from the onboard camera is RGB (Red-Green-Blue)
image.We first experimented with thresholding based on RGB chan-
nel. The result of segmentation does not work like we expected

since the RGB values are highly sensitive to illumination. There-
fore, we transformed the color space of the images into HSV (Hue,
Saturation and Value) [29]. There are three values in HSV color
space:

• Hue: Encodes color information.
• Saturation: Encodes the intensity/purity of color.
• Value: Encodes the brightness of color.

RGB is defined based on primary colors. In contrast to RGB, the prin-
ciple that HSV defined is consistent with the way human perceives
color. That is, if the color of the target is known, we should paymore
attention to the Hue component. Because the Saturation and Value
represent the shades and intensities of the particular color [30].
HSV-based object detection method can adapt to the color change
of objects caused by different illumination. After segmenting the
object, we extract the largest pixel block in the connected area to
prevent noise interference in the picture. We treat the position of
the centroid of the pixel block as the coordinates of the object. We
calculate the centroid of this pixel block by raw moments:

𝑀𝑝𝑞 =

∫ 𝑎2

𝑎1

∫ 𝑏2

𝑏1

𝑥𝑝𝑦𝑞 𝑓 (𝑥,𝑦)𝑑𝑥𝑑𝑦, (7)

where 𝑓 (𝑥,𝑦) denotes continuous function of the pixel block,𝑎1,
𝑎2, 𝑏1, 𝑏2 denotes the Range of the pixel block.

𝑥 =
𝑀10
𝑀00

, 𝑦 =
𝑀01
𝑀00

, (8)

where (𝑥,𝑦) is the coordinate of object’s centroid. Based on the
coordinates of the object in frame, the robot can determine the rel-
ative position of the target in real world and decide its next action.

Deep Learning for Computer Vision. Object detection based on
color is extremely fast. However, for complex scenarios (multiple
colors in the background) or for target without color characteris-
tics, color detection does not work. In this subsection, for more
intelligent visual servoing, we rely on a neural-based approach to
object detection. In particular, we use YOLOv3 as the main object
detection algorithm [31].

YOLO is a neural network-based approach for real-time object
detection. The object detection task contains two aspects: Firstly,
determine the positions of the detected objects by bounding boxes
on the image. Secondly, classifying objects in each bounding box.
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Figure 4: Adapted from [31], common object detection mod-
els speed/accuracy on the mAP (mean Average Precision) at
.5 IoU (Intersection over Union) metric. YOLOv3, the model
we used in ourwork, is an extremely fast and accuratemodel
as shown above.

For the previous object detection methods, such as R-CNN and its
variants, completed object detection task by a pipeline with through
several steps [32] [33] [34]. In contrast, YOLO regards object de-
tection as a single regression problem and straightly detects from
image pixels to bounding box coordinates and class confidence. This
makes YOLO much faster than other models (as shown in Fig.4).
Specifically, the neural network gets an image as input, and the
output is a tensor contains bounding boxes and class predictions.

The network structure of YOLO v3 is based onDarkNet-53, which
has 53 convolutional layers network trained on an image database
called Imagenet for feature extraction [35]. There are another 53
layers stack onto it for the task of detection. 106 layers are fully
convolutional underlined architecture for YOLO v3. And the loss
function is mainly divided into three parts [31]:

𝐿𝑜𝑠𝑠 = 𝜆1𝐿𝑐𝑜𝑛𝑓 + 𝜆2𝐿𝑐𝑙𝑎 + 𝜆3𝐿𝑙𝑜𝑐 , (9)

where 𝐿𝑐𝑜𝑛𝑓 denotes the object confidence loss, 𝐿𝑐𝑙𝑎 denotes class
loss, 𝐿𝑙𝑜𝑐 denotes location loss. 𝜆 is the weight of different parts of
loss function. Exactly like the original YOLO, the model we used
with these losses is trained in a supervised manner.

The input image is divided into a discrete 𝑆 × 𝑆 grid of cells.
For each object on the image, the grid cell where the center of the
object lies on will be responsible for predicting it. Each grid cell
predicts 𝐵 bounding boxes (usually set as 3 or 5), and each bounding
box contains 𝐶 class probabilities, where 𝐶 is the number of class
in the training dataset. The bounding box prediction contains 5
components: (𝑥 , 𝑦, 𝑤 , ℎ, 𝑐). 𝑥 , 𝑦 denotes the coordinates of the
center of the bounding box. 𝑤 ,ℎ denotes the width and height of
the bounding box. 𝑥 , 𝑦,𝑤 , ℎ are normalized to [0, 1]. 𝑐 denotes the
confidence which is defined as:

𝑐 = 𝑃𝑟 (𝑂𝑏 𝑗𝑒𝑐𝑡) ∗ 𝐼𝑂𝑈 (𝑝𝑟𝑒𝑑, 𝑡𝑟𝑢𝑡ℎ) . (10)

If an object exists in the cell, 𝑃𝑟 (𝑂𝑏 𝑗𝑒𝑐𝑡) should be 1, otherwise, it
should be equal to 0. 𝐼𝑂𝑈 (𝑝𝑟𝑒𝑑, 𝑡𝑟𝑢𝑡ℎ) represents the intersection

over union between the ground truth and the predicted box. In all,
the output of the neural net is a 𝑆 × 𝑆 × (𝐵 × 5 + 𝐶) tensor. We
trained it only with one class (person). So, the outputs in our neural
network are three 𝑆 × 𝑆 × 6 tensors, where 𝑆 is equal to 13, 26,
and 52 respectively. However, one object may be detected multiple
times so there are more than one bounding box for one object. Non-
Maximum Suppression (NMS) is used to fix this problem. And the
confidence threshold and NMS threshold values are set to select
the best bounding box. Then we get the coordinates and class of
the object in the image as shown in Fig.3 (d).

3.2.2 Object Tracking Algorithm. Object tracking is the process of
locating the same objects of interest over multiple frames in videos.
To this end, we can assume that the coordinates of the object were
obtained via object detection (e.g., like described in the previous
section). However, there are some problems for a robot to track a
specified target. What will happen if there are more than one object
in the frame? In such cases, we cannot always match a specified
target in the current frame to the previous frame. Essentially, during
object detection, we worked on one image at a time and we had
no idea about the motion and past movement of the object, so we
cannot uniquely track a specified target by camera in real-time. To
solve this problem, we propose to compare and match objects in
successive frames based on their relative positions. By calculating
the Euclidean distance (Equation.11) between all objects detected
in this frame and the target in the previous frame, we can get the
result that the object corresponding to the minimum Euclidean
distance is regarded as the target of this frame.

dist((𝑥,𝑦), (𝑎, 𝑏)) =
√
(𝑥 − 𝑎)2 + (𝑦 − 𝑏)2 . (11)

The object to be tracked is determined by the initialization in the
first frame. With that, the robot can continuously track one tar-
get even though there exist multiple similar objects in the frame.
However, note that this method is still not comprehensive enough
because the object tracked can switch if another object passes in
front of it. We will improve this algorithm in our future works.

(a) (b)

Figure 5: MATLAB Simulation. (a) top view of the hexapod
robot at initial position showing the leg numbering conven-
tion. (b) tripod gait: three legs always remain on the ground.

3.3 Visual-based Control Method
The output of two image processing methods includes the coordi-
nates (𝑥,𝑦) of centroid of the target in the image. Therefore, we
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consider the target as a point where its centroid lies on. To find out
the relative position of the target respect to the robot, we divide
the input image into three areas as shown in Fig.6.

Figure 6: We divide the frame into three areas. Each of blue
area corresponds to different relevant parameter in our CPG
model. The grey areas are "buffer areas". If center point of
the target lies on the grey area, the relevant parameter re-
main the same with the previous step.

Based on limit cycle equation, we can steer the robot by changing
the parameters 𝑎 (stride length) in the CPG model. If the point
(𝑥,𝑦) lies on the right area in the frame, the 𝑎 of the limit cycle
corresponded to the three legs on the right side will be decreased
by 20%, and the remaining 𝑎 for the left side will be increased
by 20%, so that the robot can turn to the right. If the point (𝑥,𝑦)
lies on the center area of the frame, the values of 𝑎 on both sides
will keep equal to each other, so that the robot could go forward.
We set buffer area to improve the fault tolerance of the detection
algorithm. If the point (𝑥,𝑦) lies on the buffer area (gray area in
Fig.6), 𝑎 remain the same as the last detection and the gait of the
robot will not be changed. The degree of turning can be set by
changing the difference of 𝑎 in right side and left side.

4 EXPERIMENTS
In this section, we conduct experiments on a simulated model and
two types of robots respectively. But first, we present the initial
parameters of CPG in the experiment and how to combine the
output of CPGmodel with joint angles of hexapod robot to generate
locomotion.

4.1 Matlab Simulation
Before going for robot experiments, we use MATLAB simulations
to verify the feasibility of the CPG model and tune the relevant
parameters. For simulations and experiments, each of the six robot
legs has three modular joints. From robot body, the first joint aligns
with the yaw axis, second and last joints align with the roll axis.
The two most proximal joints act as the shoulder of the robot and
correspond to the x and y of the CPG model respectively.

We select the tripod gait for robot in simulation, which means
the robot maintains at least three legs on the ground at any given
time [36]. The tripod gait has the best performance both in speed
and stability of locomotion for hexapod robot [37]. We applied

tripod gait to the robot through the K matrix shown as below:

𝐾 =



0 −1 −1 1 1 −1
−1 0 1 −1 −1 1
0 1 0 −1 −1 1
1 −1 −1 0 1 −1
1 −1 −1 1 0 −1
−1 1 1 −1 −1 0


.

Based on our choice of gait, as well as the robot morphology, we
defined initial position 𝑥0,𝑦0 and constant offsets 𝑐𝑥 ,𝑐𝑦 as:

𝑥0 =
[

𝜋
8 −𝜋

8 −𝜋
8

𝜋
8

𝜋
8 −𝜋

8
]
,

𝑦0 =
[

0 0 0 0 0 0
]
,

𝑐𝑥0 =
[

𝜋
4

𝜋
4 0 0 −𝜋

4 −𝜋
4

]
,

𝑐𝑦0 =
[

𝜋
16

𝜋
16

𝜋
16

𝜋
16

𝜋
16

𝜋
16

]
,

(12)

where 𝑐𝑥 , 𝑐𝑦 determines the plane in which the limit cycle lies on.
In fact, we could start the oscillators in nearly any position and
they would converge to the right limit cycle we set, but the stability
of the robot cannot be guaranteed. Therefore, the initial position of
six legs are set on the limit cycle in order for robot to start moving
steadily. The initial position of the hexapod robot in simulation is
shown in Fig.5(a).

The remaining parameters in CPG model are set with: 𝛾 = 1,
𝜆 = 0.3. The relationship between the output of CPG model and
the angle of each joint is as follow:

𝜃1,𝑖 = 𝑥𝑖 , 𝜃2,𝑖 = max
(
𝑦𝑖 , 𝑐𝑦,𝑖

)
, 𝜃3,𝑖 = 𝑓

(
𝜃1,𝑖 , 𝜃2,𝑖

)
, (13)

where 𝜃1,𝑖 ,𝜃1,𝑖 ,𝜃3,𝑖 are the angles of first joint, second joint and
last joint respectively. We define the 𝑦1 < 𝑐𝑦,𝑖 as the leg is on the
ground. In contrast, 𝑦1 > 𝑐𝑦,𝑖 means the set of legs is in the air.
𝑓 (𝜃1,𝑖 , 𝜃2,𝑖 ) make the trajectory of the end of each leg a straight
line, shown in Fig.7, so that the robot able to walk forward.

(a) (b)

Figure 7: Trajectory of the end of each leg is a straight line.
(a) Top view of the trajectory of the end of six legs. (b) Tra-
jectory of the end of leg in three-dimensional space

4.2 Hardware Experiments
In this section, we use two different hexapod Robots to validate our
CPG model. We apply the visual servoing based on color detection
and YOLOv3 to two hexapod robots respectively. During these
experiments, we introduce feedback from visual information into
the CPG model to make it a closed-loop system.
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(a) (b)

Figure 8: (a) Hexa robot walk towards the red box on the
left front with its trajectory (blue line). (b) Daisy perspective
when the robot is tracking people (the bounding box in red
is target, the bounding box in blue is other objects in frame).

4.2.1 HEXA (Vincross). HEXA is a 6-legged (18 motors), highly
maneuverable, compact robot that comes complete with an onboard
camera (shown as Fig.8 (a)). We applied our CPG model to it by
MIND, a robotics OS and SDK, in Golang programming language.
According to the leg structure of the robot, the constant offsets
𝑐𝑥 ,𝑐𝑦 were defined as:

𝑐𝑥0 =
[
−𝜋

4 −𝜋
4 0 0 𝜋

4
𝜋
4

]
,

𝑐𝑦0 =
[

0 0 0 0 0 0
]
.

(14)

Other CPG parameters are the same as those in the MATLAB simu-
lations. We test our CPG framework based on color detection on
HEXA (Fig.8 (a)). The target is placed at 1m, 2m, 5m from the robot
respectively. At different distances, the robot can accurately track
the position of the target and follow it as the target moves. However,
if there is some interference in the background that is similar to
the color of the target, the accuracy will decrease as the distance
between target and the robot increases. This is the weak point of
color-based object tracking. Next, we tested the network-based
method on another robot.

4.2.2 Daisy (HEBI ROBOTICS). The robot we used (Fig.1) is a
hexapod robotics kit designed by HEBI ROBOTICS. HEBI Robot-
ics’ X-Series actuators are used for Modular configuration. Force
sensing and position control are available at each joint. We use the
HEBI Python API to implement control of each actuator’s motion
and connected an external Logitech camera (C930c) as an onboard
vision sensor. The 𝑐𝑥 and 𝑐𝑦 were defined as 0 based on the struc-
ture of the joints. Other CPG parameters are the same as those in
MATLAB simulation.

We trained our own version of the YOLOv3 neural network
on the COCO dataset, which has 80 classes. We only used one
class (the ’person’ class) in our experiment, and the object tracking
algorithm was used to handle situations where multiple targets
appear in the frame at the same time (Fig.8 (b)). We tested neural
network-based visual control models in complex environments. We
change the distance between robot and target from 0.5m to 5m. The
result shows that the robot can continuously track the target even
in complex environments and is not affected by another similar
object in the frame. A video of the experiments can be found at
https://youtu.be/hmV5AVvZPf0.

5 DISCUSSION
We tested two detection models with two different Robots. For
the model based on conventional computer visionit takes 45ms
and 33ms for HEXA and Daisy to process one frame respectively.
The model based on deep-learning method takes 100ms to process
one frame when it is running on Daisy. The neural network-based
model was slower than color-based model when it works on Daisy.
However, the performance of robots with two models were almost
same in experiments. Because the speed of the target is limited in
normal scenarios. High-speed moving targets are not considered in
this work.

Table 1: Frame rate of two object detection models

Model Processor frames per second

HSV color ARM Cortex-A9 (HEXA) 22fps
HSV color Intel i3-8109U (Daisy) 30fps
YOLOv3 Intel i3-8109U (Daisy) 10fps

Two methods of image processing are suitable for different sce-
narios. The conventional computer vision method can be used in
scenarios where the background is relatively simple, and the color
characteristics of the tracked objects are distinguishable from the en-
vironment, thus achieving faster speed with less computing power.
The deep-learning method can be used in complex scenarios for
hard missions. However, the deep-learning method is computation-
ally expensive. Therefore, our next step is to simplify the network
and increase the speed of the network. We will try to implement
some shallow networks both on HEXA and Daisy, so that the robot
could track the high-speed moving target.

Figure 9: The positions of Leg1 and Leg3 when locomotion
changed from forward to turning (joint1 and joint2).

To further improve the performance and simplicity of the visual-
based control architecture for the robot, we believe that the next
step is an end-to-end neural network based on the existing network
model. That is, the input of the neural network would be the frame
and the output would directly be the parameters of the CPG model.
Then the visual feedback can be further combined with inertial
feedback for more intelligent control.

https://youtu.be/hmV5AVvZPf0
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6 CONCLUSION
In this paper, we built a CPGmodel for hexapod robot and presented
two approaches for visual servoing of a hexapod robot using a CPG
framework. We showed how the gait of a robot can be changed
by adjusting the relevant parameters of the CPG model. Inspired
by vertebrate animals, vision sensor with neural networks acts as
brain of the robot to send a high-level command to the CPG model
which acts as the spinal cord of the robot to generate locomotion.
Specifically, this work presents two approaches to visual-based
control. For simple scenarios, we can use the method based on
conventional computer vision that requires less computing power.
Second, our deep-learning-based method can handle more general
tasks in complex environments but at the cost of more computing
power. We implement our approaches on two types of hexapod
robot respectively. Experimental results showed that the robot can
change gait smoothly based on visual information in real-time and
exhibited good performance even in a complex scenario.

We believe that visual control can further improve the perfor-
mance of robots from two main aspects. Firstly, this approach will
improve the environmental adaptability of the robot. The robot can
get information about the environment through an onboard camera,
such as terrain, obstacle and scenarios. According to the informa-
tion from vision, the robot can adjust the gait to avoid obstacles or
change gait to suit the complex terrain. Based on the convergence
characteristics of the limit cycle, the robot can switch gait smoothly.
Fig.9 shows that joints position feedback of the first and third legs
joints when the limit cycle of the robot is changed. The limit cycle’s
parameters is changed at t=235, then the amplitude of oscillation for
the base joint is increased smoothly, showing smooth convergence.

Secondly, combining vision sensor with an advanced neural net-
work, the robot can complete different complex tasks intelligently,
for example, the identification, detection, and tracking in different
scenarios. It also can be used in search-and-rescue scenarios, such
as in buildings damaged by earthquake or fire.
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