
Deep reinforcement learning based multi-agent pathfinding
Luo Zhiyao

A0209423L

e0452733@u.nus.edu

Multi-Agent Robotic Motion Laboratory

National University of Singapore

Guillaume Sartoretti

guillaume.sartoretti@nus.edu.sg

Multi-Agent Robotic Motion Laboratory

National University of Singapore

ABSTRACT
Multi-agent pathfinding (MAPF) is a crucial topic at the centre of

many large-scale robotic applications from logistic distribution sys-

tems to simultaneous localization and mapping. recent works have

proposed new AI-based approaches to MAPF, one of which called

PIRMAL, casting MAPF into the reinforcement learning framework

where agents are expected to learn full-decentralized policies under

the demonstration of an expert system. This paper extends the

previous work on 2D PRIMAL to 3D search space and discusses the

communication mechanism of PRIMAL, as PRIMALc, in 2D search

space. By careful reward shaping and gradient clipping, introduc-

ing communication into PRIMAL make imitation loss convergence

steadily to a relatively low value.

KEYWORDS
Multi-agent System, pathfinding, Deep Reinforcement Learning,

Imitation Learning

1 INTRODUCTION
Multi-agent pathfinding (MAPF) on grid maps is a challenging prob-

lem with numerous real-life applications such as surveillance [1],

search and rescue [2], and warehouse distribution service [3]. To

exploit the benefits of multi-agent pathfinding systems, in addition

to solving all the challenges facing a single robot systems, scala-

bility and path optimality are two of the most challenging aspects

of MAPF. These two challenge are particularly prominent as the

prevailing of drones, because MAPF expands the search space from

2D to 3D. On the other hand, agents are expected to communicate

each other to plan paths in a more effective way. However, due to

the stochasticity of environment, it is delicate to exchange useful

information between agents.

In this paper, we focus on planning paths for a very large popula-

tion of agents (e.g. one thousand) on a square grid map. To deal with

the trade-off between path planning quality and computational cost,

Pathfinding via Reinforcement and Imitation Multi-agent Learning

(PRIMAL) [4] was recently proposed to provide a time-efficient,

scalable and uncertainty-robust solution. By taking into account the

positions of other agents, PRIMAL let agents favor policies that will

benefit the whole team and not only themselves. Agents essentially

learn a decentralized policy in this framework. They still exhibit

implicit coordination during online planning by simultaneously

learning single-agent planning via RL, and imitating a centralized

expert path planning algorithm.

According to their experiments, PRIMAL can scale to various

team sizes, world sizes, and obstacle densities, despite only provid-

ing agents local observation of the world. In low obstacle-density

environments, PRIMAL exhibits tied performance, and even outper-

forms centralized MAPF planners which have access to the whole

state of the environment.

Extending previous work of PRIMAL [4], the main contributions

of this paper 1) introduce a conventional communication mecha-

nism PRIMALc, and 2) expands the search space to 3D space. By

implementing our communication mechanism, agents have access

to others’ predicted actions in the next few steps within their limited

field of view. In order to fit this predicted actions into the PRIMAL

network, communication between agents is represented in the form

of prediction maps, which depicts the future positions of agents

using binary matrices. Since the communication mechanism does

not change the overall structure of PRIMAL, the communicating

PRIMAL is still distributed and can be copied onto any numbers

of agents. Experimentally, we discover that the implementation

of the communication mechanism results in higher sensitivity to

hyper-parameters, and longer training episodes to convergence as

the prediction step grows comparing to original PRIMAL.

The paper is structured as follows: In Section 2 and Section

3 we review the fundamental trade-off of MAPF algorithms and

summarize some state-of-the-art approaches and RL frameworks.

In Section 4 we define the MAPF environment and present our

assumptions for the methodology. Section 5 demonstrates how

original PRIMAL is expanded from 2D space to 3D. In Section 6 we

propose a variant of PRIMAL: PRIMALc, which allows agents to

announce their future actions to other agents. Subsequently in Sec-

tion 7, a series of tests are carried out to measure the performance

of communicating PRIMAL comparing with original PRIMAL and

we presents simulation results of PRIMALc. Section 8 concludes

the remarks.

2 BACKGROUND
The biggest challenge of large-scale multi-agent pathfinding lies

in the fundamental trade-off between path optimality and compu-

tational complexity. The trade-off is illustrated by the differences

between centralized (or coupled) and decoupled algorithms to multi-

robot path planning.

Coupled approaches, most of which are the generalization of

single-agent planners inmulti-agent cases, use the high-dimensional

joint configuration space of amulti-robot system as the search space.

Configuration space is the space of the complete specification of

all the agent positions in the system. They can commonly find

collision-free paths in minimal cost globally, but at high computa-

tional cost [5], [6]. Besides, Running a centralized, systematic path

planning strategy such as A* [7] scales up poorly in practice, since

both the search space and the branching factor grow exponentially

in the number of agents.



Luo Zhiyao and Guillaume Sartoretti

Decentralized approaches, which decompose a problem into sev-

eral sub-problems, can be faster and can work for larger problems

[8]. Instead of searching the whole joint configuration space, de-

coupled algorithms explore a low dimensional space to compute a

path for each agent individually; However, many existing decen-

tralized methods offer no guarantees concerning the completeness,

running time, and solution quality, which would bring about ill-

performed path planning especially when agents are required to

avoid colliding other agents in small environments [9], [10], [11],

[12], [13].

3 RELATEDWORK
3.1 M∗-Subdimensional expansion
Subdimensional expansion is a framework to extend the scalability

of coupled planner in MAPF cases where the configuration space

of each robot is represented by a graph. First, a underlying coupled

planner computes individual policy for each robot, specifying the

individually optimal path from each point in the whole configu-

ration space to the goal, neglecting the presence of other robots.

When robots collide in the their individual policies, subdimensional

expansion grows the dimensionality of the search space locally to

perform collision avoidance using a coupled algorithm. Although

the search space may grow to cover the entire joint configuration

space in the worst case, subdimensional expansion can reduce the

dimension of search space effectively for many problems.

As an implementation of subdimensional expansion, M
∗
uses A

∗

[14] as the underlying coupled planner. M
∗
is proved to have the

same optimality and completeness properties as A
∗
[15].

In particular, OD-recursive-M
∗
(ODrM

∗
) [16] can further reduce

the dimension of joint configuration space by breaking it down

into independent collision sets, combined with Operator Decom-

position(OD) [6] to keep the branching factor small during the

search.

3.2 MAPF via Reinforcement Learning
Reinforcement learning, as an area of machine learning, concerns

how to maximize the cumulative reward set by users by developing

a good strategy (i.e., policy) based on experience through trial and

error. Specifically, deep reinforcement learning has shown its poten-

tial to solve MAPF problem due to its environmental adaptability

and flexibility [17], [18].

3.3 Advantage Actor-Critic(A2C)
Considering the Monte Carlo policy gradient strategy REINFORCE

[19], the reward is calculated until the end of the episode, following

the unbiased estimation of action-value function under the current

policy at time 𝑡 . The weight is subsequently updated by

𝜃 ← 𝜃 + 𝛼∇𝜃 𝑙𝑜𝑔𝜋𝜃 (𝑠𝑡 , 𝑎𝑡 )𝑣𝑡 . (1)

If a high reward 𝑅(𝑡) is produced, all actions that agents took are

considered to be good, even if some are bad. This produces slow

learning with large variance.

To improve the training speed of Monte Carlo strategy, and to

expand it to non-episodic RL problems, the reward is required to

update at each time step. Instead of using the total rewards, actor-

critic approach [20] uses the approximation of the total reward

𝑞(𝑠𝑡 , 𝑎𝑡 ,𝑤𝑡 ) which produces predictions of reward at each time

step 𝑡 . Therefore policy and value are updated by

Δ𝜃 = 𝛼∇𝜃 (𝑙𝑜𝑔𝜋𝜃 (𝑠, 𝑎))𝑞(𝑠, 𝑎,𝑤), (2)

Δ𝜎 = 𝛽
(
𝑅(𝑠, 𝑎) + 𝛾𝑞𝜎 (𝑠 ′, 𝑎′)) − 𝑞𝜎 (𝑠, 𝑎)

)
∇𝜎𝑞𝜎 (𝑠, 𝑎), (3)

where 𝑠 ′ and 𝑎′ denotes the state and action in time step (𝑡 + 1).
Further, Advantage Actor-Critic eventually provides a good solu-

tion to measure the badness of an action by setting the state value as

baseline. Advantages function is defined by𝐴(𝑠, 𝑎) = 𝑄 (𝑠, 𝑎) −𝑉 (𝑠),
telling the improvement compared to the average performance of

all actions at the current state. In practice, TD error can be a good

estimator of the advantage function. Then the advantage function

is obtained by

𝐴(𝑠, 𝑎) = 𝑟 + 𝛾𝑉 (𝑠 ′) −𝑉 (𝑠) . (4)

In section 5.4, we will demonstrate how the advantage function

helps to convergence our network in the asynchronous manner.

4 ASSUMPTIONS
4.1 Search Space
In this paper, the MAPF problem is discussed in discrete space (2D

or 3D), where the environment can be represented by a grid world.

An agent, an obstacle and a goal position occupy respectively a unit

grid (1 by 1 in 2D space, 1 by 1 by 1 in 3D space) in the environment.

An example of a discrete MAPF environment is shown in Fig.1.

State Map

Goal Map

0 0 0 0 0 0 0 0 −1 −1 −1
0 −1 3 0 0 0 0 0 0 0 −1
0 0 −1 0 0 0 1 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 −1 −1 0 0 0
0 0 −1 0 2 0 −1 0 0 0 −1
0 0 0 −1 0 0 −1 0 0 0 0
−1 0 0 0 0 0 −1 −1 −1 −1 −1
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 3 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0

Figure 1: 2D Representation of State and Goal Maps

We assume that agents can move in the 4-connected region. In

2D space, considering an agent located at position (x0, y0), it has

maximum 5 valid actions (up, down, left, fight, and standing still),

which would result in the state transition to (x0, y0+1), (x0, y0-1),

(x0-1 y0), (x0+1, y0), (x0 y0) correspondingly. Whilst in 3D space,

including standing still, an agent has maximum 7 valid actions

along with both positive and negative directions of axis x, y and

z, which will respectively transit the original state (x0, y0, z0) to

(x0, y0, z0), (x0+1, y0, z0), (x0-1, y0, z0), (x0, y0+1 z0), (x0, y0-1, z0),

(x0, y0, z0+1) and (x0, y0, z0-1). We also assume that all the agents

move at the same speed, i.e., 1 unit cell per time step.



Deep reinforcement learning based multi-agent pathfinding

4.2 Collision
Collisions between agents occur when two agents simultaneously

occupy the same location or simultaneously cross the same edge in

opposite directions. It is also possible that agents collide with ob-

stacles, or hit the boundary of the environment. When the collision

occurs in the above-mentioned conditions, the colliding agents will

be forced to remain as its current state instead of taking its action.

Any action which will result in a collision next step is denoted as

an invalid action. Fig.2 demonstrates four particular cases where

agents are allowed or prevented to perform their actions.

x

y

1 2

(a)

2

2

y

1

x

(b)

2

y

1

x

(c)

2

x

1

34

y

(d)

Figure 2: Collision Checking: (a) Agent collides with
wall/boundary/another agent (b) Two agent collide when
reaching a new state simultaneously. (c) Two agent collide
when swapping positions. (d) Agents move in circle. This is
allowed in the setting ofmost coupled planners, but is infea-
sible in our approach.

4.3 Simulation World
The world map is a two-layered matrix stored in a centralized

environment. The first layer is called state map, where agents are

denoted by its 𝑎𝑔𝑒𝑛𝑡𝐼𝐷 , obstacles are denoted by -1, free space

denoted by 0, and the second layer is the goals map, where goals

are denoted by the 𝑎𝑔𝑒𝑛𝑡𝐼𝐷 it belongs to.

4.4 Realizing MAPF Environment as A
Reinforcement Learning Problem in
Python

Since the MAPF environment we define is discrete, we can rep-

resent the entire state space as a double-layer matrix containing

the state and goal maps, which has been discussed in Section 4.1.

The environment is centralized, with a set of functions responsible

for the interactions with agents. The environment is initialized

with a world map that contains all the state information of agents,

obstacles, and goals. At the start of a time step, the environment

assigns observation arrays to all the agents according to the current

states of the agents. Then agents make their decisions to determine

where they would go at the next time step based on the observation

received from the environment. The actions that agents make will

correspondingly be sent to verify validation by the environment.

The environment will automatically replace any invalid actions that

agents may decide to take with standing still, and the corresponding

penalty on agents’ rewards will be dealt. After proceeding with all

the actions of the agents, the environment finally allows agents

to transit to the next state. The pseudo-code of this centralized

environment is shown in Algorithm 1.

Algorithm 1 Decentralized MAPF System In A Centralized Envi-

ronment

1: functionMAPFEnv

2: Initialize world map

3: for 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 = 0→𝑚𝑎𝑥_𝑒𝑝𝑖𝑠𝑜𝑑𝑒 do
4: for 𝑠𝑡𝑒𝑝 = 0→𝑚𝑎𝑥_𝑠𝑡𝑒𝑝 do
5: for 𝑎𝑔𝑒𝑛𝑡𝐼𝐷 = 1→ 𝑛𝑢𝑚_𝑎𝑔𝑒𝑛𝑡𝑠 do
6: 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 ←Observe(𝑎𝑔𝑒𝑛𝑡𝐼𝐷)

7: 𝑎𝑐𝑡𝑖𝑜𝑛_𝑑𝑖𝑠𝑡 ←Local_Net(𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛)

8: 𝑎𝑐𝑡𝑖𝑜𝑛 ←Choice_Action(𝑎𝑐𝑡𝑖𝑜𝑛_𝑑𝑖𝑠𝑡 )

9: Step(𝑎𝑔𝑒𝑛𝑡, 𝑎𝑐𝑡𝑖𝑜𝑛)

10: end for
11: update loss

12: update reward

13: end for
14: end for
15: end function

5 3D REPRESENTATION OF PRIMAL
In this section, we present how the MAPF problem is fitted into the

reinforcement learning framework in 3D space. We demonstrate

the observation and action space of each agent, the reward structure

and the neural network that represents the policy to be learned

comparing with 2D PRIMAL.

5.1 Observation Space
Considering a partially-observable discrete grid world where agents

can only observe the state of the world in a 11 by 11 field of view

centered around themselves, the observation of each agent con-

sists of 4 layers of sub-observation respectively containing obstacle

position, neighbor agents’ positions, neighbors’ goals and agent’s

goal to simplify the learning task. All four sub-observations are

binary. When agents are close to the edges of the world, obstacles

are added at all positions outside the world’s boundaries.

We believe that partial observation is critical to PRIMAL espe-

cially in the 3D case. Since the dimension of observation expands

from 3 to 4 (4 × 11 × 11 to 4 × 11 × 11 × 11) while obstacle density
remains unchanged, the observation information would become

highly sparse. To decrease the input dimension and reduce the pos-

sibility of divergence, setting observation size equal to 11 × 11 × 11



Luo Zhiyao and Guillaume Sartoretti

Agents

Goals

Obstacle

Unit vector

𝑣ො

𝑣ො

Vector Magnitude𝑣

Figure 3: Observation of a 2D MAPF Environment. Agents
are displayed as colored squares, their goals as similarity-
colored crosses, and obstacles as gray squares. Each agent
only has access to a limited field of view centered around its
position (in this case 11 by 11), where observation informa-
tion is broken down into 4 channels: positions of obstacles,
position of nearby agents, goal positions of these nearby
agents, and position of its goal if within the field of view.
Positions that are outside of the world’s boundary is consid-
ered to be obstacles.

is effective experimentally. Besides, each agent needs to have access

to information about its goal, which is often outside of its field of

view in partial-observation case. We give each agent both a unit

vector pointing towards its goal and the Euclidean distance to its

goal as part of their observation data, which is shown in 3.

5.2 Action Space
Agents take discrete actions in the grid world: moving one cell

in one of the six cardinal directions in 3D space (forward, back,

up, down, left, right) or staying still. During training, actions are

sampled only from valid actions and additional loss functions aids

in learning this information. In other words, all the invalid actions

will be filtered by the environment in the training process. This will

experimentally enable more stable training, compared to giving

punishment for selecting invalid moves.

If an agent selects an invalid move during testing, it instead

stands still for that time step, and the corresponding penalty is

dealt. In our tests, agents very scarcely perform invalid moves once

fully trained, showing that agents sufficiently learn the set of valid

actions in each state.

Additionally, to combat convergence to back-and-forth moving

strategies, agents are prevented during training from returning to

the location they occupied at the last time step, but they are allowed

to stay still during multiple successive time steps, which is to guar-

antee agents a way to turn back or allow agents to stay on their

goals once reached. This is necessary to encourage exploration and

learn effective policies even during M
∗
imitation learning process.

5.3 Reward
We design our reward function following a similar structure of RL

settings in MAPF. As shown in Table 1, agents are punished (i.e.,

-0.3) for each time step they are not stepping on goal in order to

encourage them to reach their goals as soon as possible. We set the

staying still penalty (i.e., -0.5) to be slightly more than the moving

penalty to encourage exploration. Collisions (no matter with walls,

boundaries, or agents) lead to a 2 penalty. Agents receive a +20

reward for finishing an episode if and only if all agents step on their

goals simultaneously.

Table 1: Reward Setting

Action Reward

Move [N/E/S/W] -0.3

Agent Collision -2.0

No Movement(on/off goal) 0.0 / -0.5

Finish Episode +20.0

5.4 Network Structure
Our work rely on the asynchronous advantage actor-critic (A3C)

algorithm [21], following the same network structure as PRIMAL.

For the network of each agent, a deep convolutional network is

designed to extract features from the observation it receives. We

use the same 6-layer convolutional network structure pictured in

Fig.4 as implemented in the definition of original PRIMAL. The

only changes is that 2D convolutional kernels are replaced with 3D

kernels to process the 3D observation.

During training, the policy, value, and “blocking” outputs are

updated in a batch when an episode finishes or exceeds maximum

episode length (256 in our case). The value is updated to match the

total discounted return 𝑅𝑟 =
∑𝑘
𝑖=0 𝛾

𝑖𝑟𝑡+𝑖 . The policy loss is given

by

𝐿𝜋 = 𝜎𝐻 · 𝐻 (𝜋 (𝑜)) −
𝑇∑
𝑖=1

𝑙𝑜𝑔 (𝑃 (𝑎𝑡 |𝜋, 𝑜 ;𝜃 )𝐴 (𝑜𝑡 , 𝑎𝑡 ;𝜃 ))), (5)

where 𝐻 (𝜋 (𝑜)) is the entropy term to the policy loss, 𝜎𝐻 a small

entropy weights, and 𝐴(𝑜𝑡 , 𝑎𝑡 ;𝜃 ) the value function. The entropy
term is obtained by

𝐻 (𝜋 (𝑜)) = −𝑝 (𝑎𝑖 ) ·
𝑛∑
𝑖=1

𝑓𝑡 (𝑙𝑜𝑔(𝑝 (𝑥𝑖 ))), (6)

where 𝑝 (𝑎𝑖 ) denotes the probability distribution of unclassified in-

formation. In our case 𝑝 (𝑥𝑖 ) represents the confidence of each action
(in 3D space 7 actions). It is shown that adding the entropy term

encourages exploration and discourage premature convergence

[22]. And we use an approximation of the advantage function by

bootstrapping using the value function denoted by

𝐴(𝑜𝑡 , 𝑎𝑡 ;𝜃 ) =
𝑛∑
𝑖=1

𝛾𝑖𝑟𝑡+1 + 𝛾𝑘𝑉 (𝑜𝑘+1;𝜃 −𝑉 (𝑜𝑡 ;𝜃 )) . (7)



Deep reinforcement learning based multi-agent pathfinding

Conv3D

observations
observations

observations
observations

[4,11,11,11]

Conv3D

Conv3D

MaxPool

Conv3D

Conv3D

Conv3D

MaxPool

Conv3D

Unit 
Vector

Euclidean 
Distance

FC

FC

FC

Concatenate

+

ReLU

+

LSTM

FCFC

Policy

FC

Value Blocking

Figure 4: Network Structure of 3D PRIMAL

Besides the policy loss, we need two additional loss functions

𝐿𝑏𝑙𝑜𝑐𝑘 , the log likelihood of predicting incorrectly, and 𝐿𝑣𝑎𝑙𝑖𝑑 , the

log likelihood of selecting an invalid move [23]. These two losses

are represented by

𝐿𝑣𝑎𝑙𝑖𝑑 =

𝑛∑
𝑖=1

𝑙𝑜𝑔(𝑣𝑖 ) · 𝑝𝑣 (𝑖) + 𝑙𝑜𝑔(1 − 𝑣𝑖 ) · (1 − 𝑝𝑣 (𝑖)), (8)

𝐿𝑏𝑙𝑜𝑐𝑘 =

𝑛∑
𝑖=1

𝑙𝑜𝑔(𝑏𝑖 )) · 𝑝𝑏 (𝑖) + 𝑙𝑜𝑔(1 − 𝑏𝑖 ) · (1 − 𝑝𝑏 (𝑖)), (9)

𝑣 (𝑖) = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑝𝑎 (𝑖)) 𝑖 = 1, 2, ..., 7, (10)

where 𝑝𝑣 (𝑖) and 𝑝𝑏 (𝑖) denote the confidence of action validation

and blocking predicted by agent 𝑖 , 𝑣𝑖 and 𝑏𝑖 respectively denote the

ground truth of the action validation and blocking status provided

by the environment.

6 DECENTRALIZED MAPF WITH LOCAL
COMMUNICATIONS

Recall that we implement PRIMAL to decentralize the decision-

making behavior of M*, the coupled, optimal and complete solution

to MAPF knowing the global configuration space. However, M*

works under the assumption that other agents are regarded as mov-

ing obstacles, which means an agent cannot have access to where

other agents will go at the next time step. This section discusses

our proposed communication mechanism, which allows agents to

know others’ future actions in a particular way.

6.1 PRIMALc
Agents are not able to foresee others’ future actions intuitively

due to causality constrain. However, instead of providing the true

future actions (i.e., obtained by taking one step ahead of the current

time step and tracing back), we enable the agent to have access

to the prediction actions generated by other agents. In this case,

the prediction step represents the action a certain agent would

like to take if nobody else would move in the current time step.

The prediction actions will then perform as an additional input

into the neural network, which opens a new channel for agents to

make a better decision taking the advantage of others’ prediction

steps where the remaining agents are considered as static obstacles.

To perform the prediction step for each agent, we also modify

the observation (i.e., input structure of the network) and network

structure correspondingly.

6.2 Observation and Network Modification
Recall that in original PRIMAL the observation of each agent con-

sists of 4 layers of binary matrices (2-dimensional or 3-dimensional

matrix depending on 2D or 3D search space). Communication of

PRIMAL adds a set of binary matrices that illustrate the predicted

actions of other agents.We call these additional sub-observation lay-

ers ‘prediction maps’. Comparing to real time step, we denote time

steps in the prediction process as ’prediction steps’. The number of

prediction steps is set by users.

Original Observation
of PRIMAL

.
. .

n Prediction Maps

1
2

n-2
n-1

n

Other Agent’s 

current position 

in a map

Other Agent’s 

previous position 

in last map

Agent predicted 

action (taking 

effect in next 

map)

Positions of 

Other Agents

(from original

PRIMAL)

Prediction 

Map No.1

Prediction 

Map No.2

Figure 5: Observation of PRIMAL with communication
where 𝑃𝑟𝑒𝑑_𝑠𝑡𝑒𝑝 = 𝑛. Taking 𝑃𝑟𝑒𝑑_𝑠𝑡𝑒𝑝 = 2 as an example,
other agents are assumed to stand still in prediction maps
No.1 and No.2, only blue agent can move.

The number of layers of the prediction maps is consistent with

predicted step, representing how many future steps ahead agents

will let others know. Similar to the agent’s position map (as shown

in fig 3 ), prediction maps show the relative predicted positions

of agents in the limited field of view. An example of observation

representation is shown in fig 5. Therefore, the observation includes

4 + 𝑛 layers of binary matrices, where 𝑛 is the number of predicted

steps defined by users.

6.3 Training of PRIMALc
Different from the original PRIMAL, PRIMAL communication is

trained not only by current observation (i.e., 4 layers matrices

same as original PRIMAL) but also trained by future observation

(i.e., prediction maps). To generate prediction maps, the predicted

actions of all agents are desired. Thus, agents will perform their



Luo Zhiyao and Guillaume Sartoretti

predicted actions in the advance of interacting directly with the

environment in an iterative way.

Algorithm 2 Centralized Implementation of PRIMALc

1: function Compute_Future_Actions

2: Create a mirror world

3: for 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛_𝑠𝑡𝑒𝑝 = 0→𝑚𝑎𝑥_𝑝𝑟𝑒_𝑠𝑡𝑒𝑝 do
4: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑜𝑏 ←Observe(𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒)

5: 𝑝𝑟𝑒𝑑_𝑚𝑎𝑝 ←Observe(𝑜𝑡ℎ𝑒𝑟𝑠_𝑎𝑐𝑡𝑖𝑜𝑛)

6: 𝑝𝑟𝑒𝑑_𝑎𝑐𝑡𝑖𝑜𝑛 ←AC_Net([𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑜𝑏, 𝑝𝑟𝑒𝑑_𝑚𝑎𝑝𝑠])

7: upload pred_action to environment

8: wait for other agents to upload

9: update loss

10: update reward

11: 𝑝𝑟𝑒𝑑_𝑚𝑎𝑝 ← Pull_From_Env(𝑎𝑔𝑒𝑛𝑡𝐼𝐷)

12: 𝑝𝑟𝑒𝑑_𝑚𝑎𝑝_𝑙𝑖𝑠𝑡 .append(𝑝𝑟𝑒𝑑_𝑚𝑎𝑝)

13: end for
14: return (𝑝𝑟𝑒𝑑_𝑚𝑎𝑝_𝑙𝑖𝑠𝑡 )

15: end function
16:

17: functionMain_Training_Loop

18: Create a mirror world

19: for each 𝑟𝑒𝑎𝑙_𝑡𝑖𝑚𝑒_𝑠𝑡𝑒𝑝 do
20: for each 𝑎𝑔𝑒𝑛𝑡𝐼𝐷 do
21: 𝑎𝑐𝑡𝑖𝑜𝑛 ←AC_Net([𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑜𝑏, 𝑝𝑟𝑒𝑑_𝑚𝑎𝑝𝑠])

22: 𝑝𝑟𝑒𝑑_𝑚𝑎𝑝𝑠 ←Compute_Future_Actions(𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠)

23: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑜𝑏 ←Observe(𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠)

24: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠 ←Step(action)

25: end for each
26: end for each
27: end function

Prediction maps are initialized by copying the neighbor map

for 𝑛 times, where 𝑛 is the number of prediction steps. Before

determining the next action, agents will first switch to ‘prediction

mode’. In this mode, each agent uses its local network to generate

their preferred 𝑛 future actions, assuming no other agents moves in

the system. After all the agents have created their predicted actions,

they will broadcast those actions to their neighbors within their

field of views. They subsequently make their prediction maps based

on others’ announcement of predicted actions. Then, ‘prediction

mode’ is turned off. Until all prediction maps are created, agents

determine their real next-step action using the prediction maps.

Algorithm 2 shows the pseudo-code of this mechanism.

Recall that in section 5.2 we sample real actions only from valid

actions for original PRIMAL. In communicating PRIMAL, however,

we also need to consider how to sample predicted actions of agents

besides their real actions. For the training result we present, both

real agent actions and their predicted actions are sampled from

all valid actions with their respective possibilities, i.e., Boltzmann

action selection.

In experiments we found out that losses and reward curves vi-

brate much more than original PRIMAL during the training, de-

pending on the value of 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛_𝑠𝑡𝑒𝑝 . The vibration generally

leads to slower training efficiency and sometimes divergence. A

fine-tuned gradient clipping value can help to contain the vibra-

tion to some extends but cannot completely attenuate it. Especially,

when the prediction step is set to a relatively large value, (e.g. larger

than half of the observation size), agents are not able to produce

accurate individual predicted actions since their current network

have no access to the information out of their field of views. Follow-

ing on upon with the inaccurate or even wrong prediction maps,

correct decisions are difficult to be made.

We are also trying to investigate the influence if 𝑝𝑟𝑒𝑑_𝑠𝑡𝑒𝑝 is set

larger than the boundary of agents’ field of views. We subsequently

develop a series of measurement to improve the performance of

communication, e.g. using exploitation strategy (i.e., always select

the most confident action) during the prediction process. Due to the

limitation of computational resource, however, we only finish the

training and testing when 𝑝𝑟𝑒𝑑_𝑠𝑡𝑒𝑝 is equal to 2 and implementing

Boltzmann action selection until the finalization of this report. A

set of half-trained experiments are shown in 6. In Section 7 we will

make discussion exclusively based on the training result we have

fully obtained.

0 50k 100k 150k 200k 250k

Episodes

-800

-600

-400

-200

T
o

ta
l 

R
ew

ar
d

Pred_step=2, expolit

Pred_Step=10

Pred_Step=20

Figure 6: Reward plotting of Unfinished training

7 TRAINING RESULT WITH
COMMUNICATION AND SIMULATION

7.1 Training Result of PRIMALc
According to our testing, PRIMALc exhibits on-par performance

with original PRIMAL when 𝑃𝑟𝑒𝑑_𝑠𝑡𝑒𝑝 = 2. Whether PRIMALc

would outperform original PRIMAL when 𝑃𝑟𝑒𝑑_𝑠𝑡𝑒𝑝 is set to be a

larger value still requires more investigation, but we believe that

for larger values of 𝑛, the added information being shared between

agents, if used correctly, should significantly improve over the

original PRIMAL.

The implementation of our communication mechanism con-

verges the imitation loss. As shown in Fig. 7, imitation loss of

communicating PRIMAL goes down to a low value as training

episodes grow, while the curve of original PRIMAL vibrates at 1.2.

Although the imitation loss becomes sufficiently small, communi-

cating PRIMAL and original PRIMAL are shown to achieve on-par

performances on the episodes length during training. We conjec-

ture that the imitation loss (i.e., cross entropy loss between expert’s

actions and agents’ actions) cannot fully measure the proximity

from agents’ decisions to expert’s decisions, which may also be an

evidence of why original PRIMAL outperforms pure RL even if the

imitation loss does not go down. Due to time limitation, testing is

not finished by the deadline.



Deep reinforcement learning based multi-agent pathfinding

0 50k 100k 150k 200k 250k

Episodes

0

0.5

1

1.5

2

Im
it

at
io

n
 L

o
ss

Original PRIMAL

Pred_Step=2

0 50k 100k 150k 200k 250k

Episodes

50

100

150

200

250

E
p

is
o

d
e 

L
en

g
th

Original PRIMAL

Pred_Step=2

Figure 7: Training Comparison Between Communicating
PRIMAL and Original PRIMAL

7.2 Simulation
To implement our algorithms in real application such as warehouse

distribution, it is inevitable to transfer our discrete environment

into a continuous space. Thus, We set up a set of simulation in

Airsim, a simulator for drones built on Unreal Engine. We manually

mesh the continuous space of UE environment into grids with 200

centimeter length/width/height.

Airsim APIs can automatically find a smooth trajectory between

two adjacent points in the continuous space following embedded

PID control so that we can visualize the pathfinding process by giv-

ing the discrete paths which are generated by our trained network.

Experimentally we set the average velocity of drones to be 1𝑚/𝑠
to avoid excessive position overshoots. The video can be found at

https://youtu.be/8gqtUsSnnjg.

x1

x0

z0

y0

y1

z1

world size

w
or

ld
 si

ze

worl
d s

ize

Figure 8: Homogeneous Transformation From 𝑀∗ Coordi-
nate to Simulation Coordinate

Since Od_M
∗
use different coordinate, We transform the coordi-

nate frames following

𝑃𝑎 = 𝐴𝑥 (−
𝜋

2

) ¤
𝐴𝑧 (−

𝜋

2

) ¤𝑇 (0,−𝑙,−𝑙)×𝑃𝑀∗ =


0 1 0 0

0 0 1 −𝑙
1 0 0 −𝑙
0 0 1 1

×𝑃𝑀∗
(11)

where 𝑇𝑀∗ denotes the frame in 𝑀∗ representation, 𝑇𝑎 denotes

standard Cartesian frame in UE environment. To transform the

path generated by 𝑀∗ algorithm, each path point represented in

UE frame is derived by 𝑃 ′ = 𝑇𝑎 ×𝑃 , where 𝑃 ′ and 𝑃 are respectively

the augmented vectors in frame 𝑎 and frame𝑀∗.
By our exclusive simulation, drones can move smoothly along

the discrete path point controlled by built-in controller without

any collisions. In this manner, we dramatically simplify the path

planning problem, because drones only concern about high-level

commands (i.e., positions given by our approaches) rather than

complex dynamics and kinematics.

8 CONCLUSION
In this paper, we expand PRIMAL to 3D search space and pro-

pose a variant of PRIMAL, PRIMALc, which allows agents to com-

municate by exchanging their predicted future actions with each

other. Our experiments indicate that communicating PRIMAL needs

10% more episodes to converge comparing with original PRIMAL.

It also brings training process higher sensitivity towards hyper-

parameters as the 𝑝𝑟𝑒𝑑_𝑠𝑡𝑒𝑝 grows.

Future work will focus on the improvement of communicating

PRIMAL, including designing a prediction loss to slightly punish

the use of wrong predicted action, modifying action selection ap-

proaches, etc. As the dimension of the input tensor (i.e., observation

matrices) expands with the number of prediction step, the difficulty

of feature extraction grows as well. Thus, the insight is to develop

a more effective network to replace the 9 layers of CNN structure

in original PRIMAL.

Permitting agents to change their velocity provides another per-

spective direction. Intuitively, agents would be able to performmore

flexible collision avoidance strategies if they are allowed to shift

their speeds in the cases that an agent has to stand still to let other

agents pass first. Future work is expected to discover the influence

of discrete velocity towards multi-agent pathfinding problems. To

prevent agents from maximizing their speeds all the time, an accel-

erate penalty should be dealt to the speeding-up agents. Besides,

agents which run at a higher speed may have larger punishment

when they collide.

REFERENCES
[1] Paolo Remagnino, Tieniu Tan, and Keith Baker. Multi-agent visual surveillance

of dynamic scenes. Image and Vision Computing, 16(8):529–532, 1998.
[2] Jean Berger and Nassirou Lo. An innovative multi-agent search-and-rescue path

planning approach. Computers & Operations Research, 53:24–31, 2015.
[3] Kevin Nagorny, Armando Walter Colombo, and Uwe Schmidtmann. A service-

and multi-agent-oriented manufacturing automation architecture: An iec 62264

level 2 compliant implementation. Computers in Industry, 63(8):813–823, 2012.
[4] Guillaume Sartoretti, Justin Kerr, Yunfei Shi, Glenn Wagner, TK Satish Kumar,

Sven Koenig, and Howie Choset. Primal: Pathfinding via reinforcement and

imitation multi-agent learning. IEEE Robotics and Automation Letters, 4(3):2378–
2385, 2019.

[5] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic

determination of minimum cost paths. IEEE transactions on Systems Science and
Cybernetics, 4(2):100–107, 1968.

[6] Trevor Scott Standley. Finding optimal solutions to cooperative pathfinding

problems. In Twenty-Fourth AAAI Conference on Artificial Intelligence, 2010.
[7] František DuchoĖ, Andrej Babineca, Martin Kajana, Peter BeĖoa, Martin Floreka,

Tomáš Ficoa, and Ladislav Jurišicaa. Path planning with modified a star algorithm

for a mobile robot. Procedia Engineering, 96:59–69, 2014.
[8] Vishnu R Desaraju and Jonathan P How. Decentralized path planning for multi-

agent teams with complex constraints. Autonomous Robots, 32(4):385–403, 2012.



Luo Zhiyao and Guillaume Sartoretti

[9] Michael Erdmann and Tomas Lozano-Perez. On multiple moving objects. Algo-
rithmica, 2(1-4):477, 1987.

[10] Kamal Kant and StevenW Zucker. Toward efficient trajectory planning: The path-

velocity decomposition. The international journal of robotics research, 5(3):72–89,
1986.

[11] Stephane Leroy, Jean-Paul Laumond, and Thierry Siméon. Multiple path coor-

dination for mobile robots: A geometric algorithm. In IJCAI, volume 99, pages

1118–1123, 1999.

[12] Mitul Saha and Pekka Isto. Multi-robot motion planning by incremental co-

ordination. In 2006 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 5960–5963. IEEE, 2006.

[13] David Silver. Cooperative pathfinding. AIIDE, 1:117–122, 2005.
[14] Florian Grenouilleau, Willem-Jan van Hoeve, and John N Hooker. A multi-label

a* algorithm for multi-agent pathfinding. In Proceedings of the International
Conference on Automated Planning and Scheduling, volume 29, pages 181–185,

2019.

[15] Glenn Wagner and Howie Choset. Subdimensional expansion for multirobot

path planning. Artificial Intelligence, 219:1–24, 2015.
[16] Cornelia Ferner, Glenn Wagner, and Howie Choset. Odrm* optimal multirobot

path planning in low dimensional search spaces. In 2013 IEEE International
Conference on Robotics and Automation, pages 3854–3859. IEEE, 2013.

[17] Sachiyo Arai, Katia Sycara, and Terry R Payne. Multi-agent reinforcement

learning for planning and scheduling multiple goals. In Proceedings Fourth
International Conference on MultiAgent Systems, pages 359–360. IEEE, 2000.

[18] Gang Lei, Min-zhou Dong, Tao Xu, and Liang Wang. Multi-agent path planning

for unmanned aerial vehicle based on threats analysis. In 2011 3rd International
Workshop on Intelligent Systems and Applications, pages 1–4. IEEE, 2011.

[19] Ronald J Williams. Simple statistical gradient-following algorithms for connec-

tionist reinforcement learning. Machine learning, 8(3-4):229–256, 1992.
[20] Vijay R Konda and John N Tsitsiklis. Actor-critic algorithms. In Advances in

neural information processing systems, pages 1008–1014, 2000.
[21] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timo-

thy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous

methods for deep reinforcement learning. In International conference on machine
learning, pages 1928–1937, 2016.

[22] Mohammad Babaeizadeh, Iuri Frosio, Stephen Tyree, Jason Clemons, and Jan

Kautz. Reinforcement learning through asynchronous advantage actor-critic on

a gpu. arXiv preprint arXiv:1611.06256, 2016.
[23] Guillaume Sartoretti, Yue Wu, William Paivine, TK Satish Kumar, Sven Koenig,

and Howie Choset. Distributed reinforcement learning for multi-robot decentral-

ized collective construction. In Distributed Autonomous Robotic Systems, pages
35–49. Springer, 2019.


	Abstract
	1 Introduction
	2 Background
	3 Related Work
	3.1 M*-Subdimensional expansion
	3.2 MAPF via Reinforcement Learning
	3.3 Advantage Actor-Critic(A2C)

	4 Assumptions
	4.1 Search Space
	4.2 Collision
	4.3 Simulation World
	4.4 Realizing MAPF Environment as A Reinforcement Learning Problem in Python

	5 3D Representation of PRIMAL
	5.1 Observation Space
	5.2 Action Space
	5.3 Reward
	5.4 Network Structure

	6 Decentralized MAPF with Local Communications
	6.1 PRIMALc
	6.2 Observation and Network Modification
	6.3 Training of PRIMALc

	7 Training Result with Communication And Simulation
	7.1 Training Result of PRIMALc
	7.2 Simulation

	8 Conclusion
	References

